BACCALAURÉAT GÉNÉRAL SESSION 2012

SCIENCES DE LA VIE ET DE LA TERRE Série S

ENSEIGNEMENT OBLIGATOIRE ENSEIGNEMENT DE SPÉCIALITÉ

Corrigé et barème indicatifs

Partie I *(8 points)* Stabilité et variabilité des génomes et évolution

Notions attendues	Barème
Plan/forme	1
Le cycle biologique d'une espèce diploïde est constitué d'une phase haploïde (H) et d'une phase diploïde (D). Dans ce cycle la méiose est suivie de la fécondation.	1
Schéma du cycle comportant les légendes suivantes : méiose, fécondation, mitoses, phase H, phase D, cellule œuf, gonades ou testicules ou ovaires.	1
Le passage de la phase D à la phase H se réalise grâce à la méiose. Elle suit une phase de réplication de l'ADN. Elle se compose de deux divisions cellulaires successives. Chaque cellule fille issue de la méiose possède un lot haploïde de chromosomes.	1.5
Schéma de la méiose pour une cellule à 2n= 6 chromosomes.	1.5
Le passage de la phase H à la phase D se fait grâce à la fécondation. Elle rétablit la diploïdie. Elle réunit les lots haploïdes des gamètes d'une même espèce.	1
Schéma de la fécondation pour 2 gamètes avec n=3 chromosomes.	1

Partie II exercice 1 (3 points) La convergence et ses effets

Saisie des données	Barème	Interprétation	Barème
Présence d'ophiolites et de sédiments marins	0,5 0,5	Présence d'un ancien océan (= lithosphère océanique) entre les plaques indienne et asiatique.	0,5
Plus au Nord, présence de sédiments d'un ancien prisme d'accrétion.	0,5		
		Les prismes d'accrétion et ophiolites signent une ancienne zone de subduction.	0,5
		La position relative des terrains (granitoïdes au nord, prismes d'accrétion au sud) Montre que la plaque indienne plonge sous la plaque asiatique	0,5

Partie II - Exercice 2 *(5 points)*Parenté des organismes, phylogénèse et évolution

Saisie de données	Barème	Interprétation	Barème
Document 2 et 3 le pigeon possède les caractères A, B, E, H, I à l'état dérivé	0,5	Donc pigeon appartient aux groupes suivants : archosauriens, dinosaures, saurischiens, théropodes	0,5
Document 4 a Archéoptéryx possède une queue, une fourchette et n'a pas de bréchet Document 4 b	0,5	Caractère M et N à l'état ancestral, caractère L à l'état dérivé	0,5
Archéoptéryx possède des plumes asymétriques Document 4 c Archéoptéryx possède des dents	3,0	Caractère J à l'état dérivé	0,5
Document 3 Sinosauroptérix possède les caractères J et L à l'état	0,5	Caractère K à l'état ancestral	0,5
ancestral / Archéoptéryx à l'état dérivé		-Archéoptéryx possède un ancêtre commun exclusif avec le pigeon que Sinosauroptérix ne possède pas	0,5
		-Arbre recopié avec archéoptéryx positionné	0,5
		Donc : caractères L, et J acquis avant les caractères K, M et N.	0,5

Partie II exercice 2 *(5 points)*Diversité et complémentarité des métabolismes

Saisie des données	Barème	Interprétation	Barème
Pendant l'obscurité la concentration en O ₂ diminue (valeurs attendues) En présence d'un filtre vert la concentration en O ₂ diminue (valeurs attendues) En présence de lumière blanche, d'un filtre bleu, d'un filtre vert, la concentration en O ₂ augmente. (valeurs attendues)	0.5	La production d'O ₂ se fait en présence de lumière blanche et dépend de la longueur d'onde de la lumière utilisée; les longueurs d'onde 660 nm et 490 nm permettent la photosynthèse. Il y a correspondance entre les radiations absorbées par les pigments chlorophylliens et production d'O ₂ , ce qui montre qu'il y a intervention des pigments	0.5
Document 1 b Le % d'absorption est faible autour de 30% pour 520 nm (filtre vert) Le % d'absorption est plus élevé autour de 60% pour 490 nm (filtre bleu) Le % d'absorption est encore plus élevé autour de 70% pour 680 nm (filtre rouge)	0.5	chlorophylliens dans la production d'O ₂ .	
Document 2 Expérience 1: quand H ₂ O contient l'isotope lourd ¹⁸ O, le dioxygène produit lors de la photosynthèse est marqué. Expérience 2: quand CO ₂ contient l'isotope lourd ¹⁸ O, le dioxygène produit lors de la photosynthèse n'est pas marqué.	0.5	L'O ₂ vient de la molécule d'eau qui a subi en présence de lumière une photolyse (ou une oxydation).	0.5
Document 3 La réaction de Hill permet d'étudier la production d'O ₂ par un extrait cellulaire riche en chloroplastes (contenant aussi des mitochondries) en absence de CO ₂ . Pendant l'obscurité et à la lumière en absence de DCPIP, la concentration en O ₂ diminue.	0.5	En présence de lumière et d'un accepteur d'électron le DCPIP, les chloroplastes produisent de l'O ₂ ; au cours de cette production le DCPIP passe d'un état oxydé (bleu) à un état réduit (incolore). Dans la feuille, un accepteur d'électrons est nécessaire : le R est réduit en RH ₂ lors de la production d'O ₂ .	0.5
A la lumière en présence de DCPIP, la concentration en O ₂ augmente. Le DCPIP change de couleur au cours de l'expérience à la lumière (en A et en B) lorsque la concentration en O ₂ augmente, mais pas à l'obscurité (en C) lorsque la concentration en O ₂ diminue.	0.5	Synthèse La production d'O ₂ s'effectue pendant la phase photochimique: - les pigments chlorophylliens absorbent certaines radiations lumineuses rouges et bleues, ce qui provoque la photolyse de l'eau: l'eau est à l'origine de l'O ₂ produit la photolyse est associée à des réactions d'oxydo-réductions nécessitant des acceptaurs finance d'électrons et de	0.5
		des accepteurs finaux d'électrons et de protons R qui seront réduits en RH ₂ .	0.5