CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

ÉLÉMENTS DE CORRECTION BARÈME PROPOSÉ

N.B.: Il est rappelé que ce document est à l'usage exclusif des jurys. Les règles de confidentialité habituelles s'appliquent à son contenu.

Exercice 1	4 points	barème
	1.a. $f_c = 0.365$; $f_s = 0.295$; $f_a = 0.295$	0,340 0,5
	b. $400 \text{ d}_{\text{obs}}^2 = 1.01$	0,5
	2. $D_9 \in [1,5; 2]$ donc $D_9 = 1,5$ défaut.	
	3. $ 400 \text{ d}_{obs}^2 < D_9 \text{ donc on ne p}$	peut
	pas rejeter l'hypothèse d'équirépartition avec un ris d'erreur inférieur à 10%.	
	4.a. $1 - \frac{1}{3} = \frac{2}{3}$	0,5
	b. $3 \times \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$; on putiliser un arbre.	peut 0,5

Candidats n'ayant pas suivi l'enseignement de spécialité

Exercice 2		5 points	Barème
	1.	1 (D 1 , O) = 0,4,	
		$P(\overline{D} \cap O) = 0.1$ $P(E) = 0.5$	1,5
	2.a.		1
	b.		0,5
	c.		0,5
	d.	$\frac{0.9p}{0.8p+0.1}$ ≥0,9 est réalisé pour $p \ge 0.5$. Dès que la fréquence de dopés atteint ou dépasse 50%, la probabilité qu'un sportif déclaré positif soit dopé dépasse 0,9.	1,5

Candidats ayant suivi l'enseignement de spécialité

Exercice 2	5 points	Barème
1.a.	obtenir est environ 130. Il correspond à $x = 10$ et $y = 10$.	0,5
	$(x_1;y_1) = (9;1); (x_2;y_2) = (4;4).$ $z_0 = 30$, les points sont situés sur une même ligne de niveau (courbe d'indifférence)	0,75
2.a.	2x + y - 8 = 0	0,5
b.	C'est l'équation d'un plan de l'espace, parallèle à (Oz) Tracés corrects	0,75
3.a.	$f(x, y) = -2x^2 + 8x + 10$	0,5
b.	Il s'agit d'une fonction polynôme du second degré dont les branches de la parabole sont tournées vers le bas, l'abscisse du sommet est 2.	1
C.	x = 2, y = 4, z = 18.	0,5
4.	3.c (18) est différent de 1.a (130). Cela provient du fait qu'en 1. on cherchait le degré minimal sans tenir compte du budget et donc les solutions sont à chercher dans l'intersection de la surface de la figure 1 et du plan P. Or,P ne passe pas par le point de coordonnées (10 ;10 ; 130)	0,5

MATHÉMATIQUES - SÉRIE ES CODE: 3 M A O E I N 1

Problème		11 points	Barème
	A.1.	$\lim_{x \to +\infty} g(x) = 0 \text{ donc la droite D}$ d'équation $y = 0$ est asymptote à	1
		C_g au voisinage de + ∞ .	
	2.a.	$g'(x) = \frac{-50(2x+1)}{(x^2+x+1)^2}$	0,5
	b.	<u> </u>	0,75
	3.	y = -50 x + 50.	0,25
		Courbe correcte	1
		$\lim_{x\to+\infty}f(x)=+\infty$	0,5
	2,	$f'(x) = 0.26 e^{0.26 x}$; f est strictement croissante sur [$0; +\infty$ [1
	3.		0,5
		$5 \le p_0 \le 6$; $2 \le q_0 \le 3$	0,5
	2.a.	La somme de deux fonctions (f et $-g$) strictement croissantes sur [0 ; + ∞ [est strictement croissante sur [0 ; + ∞ [.	1
	b.	I I	0,75
	c.	, ·	0,5
		$p_0 = 5,56 \text{ à } 10^{-2}.$	0,5
		Interprétation correcte	0,75
		$S_p = p_0 q_0 - \frac{3}{0,26} e^{0.26 q_0} + \frac{3}{0,26}$	1
		$S_p = 3.3 \text{ à } 10^{-1} \text{ près par défaut.}$	0,5