CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

Sujet 21 cs 03 CORRIGE ET BAREME

EXERCICE 1	4 points
1. a) $u_1 = \frac{15}{64}$ et $u_2 = \frac{1695}{4096}$	0,25
b) Tracé de la droite et de la parabole (l'étude des variations n'est pas demandée)	0,5
c) construction des points A ₁ , A ₂ et A ₃	0,5
2. a) raisonnement par récurrence correct et $0 < u_n < 1$	0,5
b) démonstration correcte de la croissance de la suite u	0,5
c) la suite u est croissante et majorée (par 1) donc converge	0,25
3. a) $v_{n+1} = (v_n)^2$	0,25
b) $v_n = (v_0)^{2^n} \text{ avec } v_0 = \frac{7}{8}$	0,5
c) $\lim_{n \to +\infty} 2^n = +\infty$ et $0 < v_0 < 1$ donc $\lim_{n \to +\infty} v_n = 0$	0,5
$u_n = 1 - v_n$ et $\lim_{n \to +\infty} v_n = 0$ donc $\lim_{n \to +\infty} u_n = 1$	0,25

EXERCIO	E 2: Enseignement Obligatoire	5 points
Partie I		
1	P(2) = 0	0,25
	Détermination des trois réels a, b et c : a=1, b=4 et c=8	0,50
2	Résolution de $P(z) = 0$; 3 solutions 2, -2-2i et -2+2i	0,50
	$-2-2i = 2\sqrt{2} e^{-i\frac{3\pi}{4}} \text{ et } -2+2i = 2\sqrt{2} e^{i\frac{3\pi}{4}}$	0,25
Partie II		
1	Points correctement placés	0,25
2	z_C = 2+4i avec justification correcte	0,25
3	a) $z_E = 6$; $z_F = -4 + 6i$	0,50
	b) points E et F correctement placés	0,25
4	a) Egalité correctement justifiée	0,25
	b) Raisonnement correct prouvant que AEF est un triangle rectangle en A et isocèle	0,5
5	Raisonnement correct prouvant que l'image du triangle EBA est FDA	0,5

PARTIE I 1. Les deux triangles B ₁ JH et IHB sont semblables Démonstration correcte 2. Les deux triangles ABC et A ₁ B ₁ C ₁ sont semblables 0,5 PARTIE II Partie A 1. Points correctement placés 2. $z_1 = 5 - 3i$; $z_1 = 5 + 3i$; $z_k = -4$ 3. les points A ₁ , 1 et B ₁ sont alignés (toute méthode acceptée) 4. $(\overline{IB}, \overline{IB_1}) = = \arg \frac{2}{3}(1+i) = \frac{\pi}{4}$ 0,5 5. L'image de la droite (AB) par la rotation de centre 1 et d'angle $\frac{\pi}{4}$ est (A ₁ B ₁) (toute méthode acceptée). Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB. L'existence d'une similitude directe transformant le triangle ABC en A ₁ B ₁ C ₁ est admise; done, si l'écriture a été recherchée sous la forme $z^2 = az^2 + b$, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisème couple n'est pas nécessaire. Autre méthode acceptée: vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de s = $\frac{\sqrt{2}}{2}$ Angle de s = $\frac{\pi}{4}$ b) affixe du centre : 4 3. A $\Omega = B \Omega = C \Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC 0,5	EXERCICE	2 Enseignement de spécialité	5 points
2. Les deux triangles ABC et A_1 B_1 C_1 sont semblables 0,5 PARTIE II Partie A 1. Points correctement placés 0,5 2. $z_1 = 5 - 3i$; $z_1 = 5 + 3i$; $z_K = -4$ 0,5 3. les points A_1 , I et B_1 sont alignés (toute méthode acceptée) 0,5 4. $(\overrightarrow{IB}, \overrightarrow{IB_1}) = = arg \frac{2}{3}(1+i) = \frac{\pi}{4}$ 0,5 5. L'image de la droite (AB) par la rotation de centre I et d'angle $\frac{\pi}{4}$ est (A_1B_1) (toute méthode acceptée) . Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB. L'existence d'une similitude directe, toute méthode acceptée on,5 NB. L'existence d'une similitude directe transformant le triangle ABC en A_1 B_1 C_1 est admise; donc, si l'écriture a été recherchée sous la forme $z'=az+b$, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de $s = \frac{\sqrt{2}}{2}$ 0,25 Angle de $s = \frac{\pi}{4}$ 0,25 h) affixe du centre : 4 3. $AQ = BQ = CQ$ donc Q est le centre du cercle circonscrit au triangle ABC	PARTIE I		
PARTIE II Partie A 1. Points correctement placés 2. $z_1 = 5 - 3i$; $z_3 = 5 + 3i$; $z_K = -4$ 3. les points A_1 , I et B_1 sont alignés (toute méthode acceptée) 4. $(\overline{IB}, \overline{IB_1}) = = \arg \frac{2}{3}(1+i) = \frac{\pi}{4}$ 5. L'image de la droite (AB) par la rotation de centre I et d'angle $\frac{\pi}{4}$ est (A_1B_1) (toute méthode acceptée). Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB. L'existence d'une similitude directe transformant le triangle ABC en $A_1B_1C_1$ est admise; donc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de s = $\frac{\pi}{4}$ 0,25 Angle de s = $\frac{\pi}{4}$ 0,25 0,25 3. $A\Omega = B\Omega = C\Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC	1.	Les deux triangles B ₁ JH et IHB sont semblables Démonstration correcte	0,25
Partie A 1. Points correctement placés 2. $z_1 = 5 - 3i$; $z_2 = 5 + 3i$; $z_K = -4$ 3. les points A_1 , I et B_1 sont alignés (toute méthode acceptée) 4. $(\overline{IB}, \overline{IB_1}) = = \arg \frac{2}{3}(1+i) = \frac{\pi}{4}$ 0,5 5. L'image de la droite (AB) par la rotation de centre 1 et d'angle $\frac{\pi}{4}$ est (A_1B_1) (toute méthode acceptée). Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB. L'existence d'une similitude directe, toute méthode acceptée NB. L'existence d'une similitude directe transformant le triangle ABC en A_1 B_1 C_1 est admise; donc, si l'écriture a été recherchée sous la forme $z'=az+b$, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de $s = \frac{\pi}{4}$ b) affixe du centre : 4 3. $A\Omega = B\Omega = C\Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC	2.	Les deux triangles ABC et A ₁ B ₁ C ₁ sont semblables	0,5
1. Points correctement placés 2. $z_1 = 5 - 3i$; $z_1 = 5 + 3i$; $z_K = -4$ 3. les points A_1 , I et B_1 sont alignés (toute méthode acceptée) 4. $(\overrightarrow{IB}, \overrightarrow{IB_1}) = = \arg \frac{2}{3}(1+i) = \frac{\pi}{4}$ 0,5 5. L'image de la droite (AB) par la rotation de centre I et d'angle $\frac{\pi}{4}$ est (A_1B_1) (toute méthode acceptée). Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB . L'existence d'une similitude directe transformant le triangle ABC en A_1 B_1 C_1 est admise ; donc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de s = $\frac{\sqrt{2}}{2}$ Angle de s = $\frac{\pi}{4}$ 0,25 0,25 3. $A \Omega = B \Omega = C \Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC	PARTIE II		
2. $z_1 = 5 - 3i$; $z_2 = 5 + 3i$; $z_K = -4$ 3. les points A_1 , I et B_1 sont alignés (toute méthode acceptée) 4. $(\overrightarrow{IB}, \overline{IB_1}) = = arg \frac{2}{3}(1+i) = \frac{\pi}{4}$ 5. L'image de la droite (AB) par la rotation de centre I et d'angle $\frac{\pi}{4}$ est (A_1B_1) (toute méthode acceptée). Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB . L'existence d'une similitude directe transformant le triangle ABC en A_1 B_1 C_1 est admise; donc, si l'écriture a été recherchée sous la forme $z'=az+b$, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de $s = \frac{\sqrt{2}}{2}$ Angle de $s = \frac{\pi}{4}$ b) affixe du centre : 4 0,25 0,25 3. $A \Omega = B \Omega = C \Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC	Partie A		
3. les points A_1 , I et B_1 sont alignés (toute méthode acceptée) 4. $(\overrightarrow{IB}, \overrightarrow{IB_1}) = = \arg \frac{2}{3}(1+i) = \frac{\pi}{4}$ 5. L'image de la droite (AB) par la rotation de centre I et d'angle $\frac{\pi}{4}$ est (A_1B_1) (toute méthode acceptée). Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB . L'existence d'une similitude directe transformant le triangle ABC en A_1 B_1 C_1 est admise ; donc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de $s = \frac{\sqrt{2}}{2}$ Angle de $s = \frac{\pi}{4}$ 0,25 b) affixe du centre : 4 0,25 0,25	1.	Points correctement placés	0,5
4. $(\overrightarrow{IB}, \overrightarrow{IB_1}) = = \arg \frac{2}{3}(1+i) = \frac{\pi}{4}$ 0,5 5. L'image de la droite (AB) par la rotation de centre 1 et d'angle $\frac{\pi}{4}$ est (A ₁ B ₁) (toute méthode acceptée). Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB. L'existence d'une similitude directe transformant le triangle ABC en A ₁ B ₁ C ₁ est admise; donc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée: vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de s = $\frac{\pi}{4}$ 0,25 Angle de s = $\frac{\pi}{4}$ 0,25 3. A $\Omega = B$ $\Omega = C$ Ω donc Ω est le centre du cercle circonscrit au triangle ABC	2.	$z_1 = 5 - 3i$; $z_3 = 5 + 3i$; $z_K = -4$	0,5
5. L'image de la droite (AB) par la rotation de centre I et d'angle $\frac{\pi}{4}$ est (A ₁ B ₁) (toute méthode acceptée). Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB . L'existence d'une similitude directe transformant le triangle ABC en A ₁ B ₁ C ₁ est admise ; donc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de s = $\frac{\sqrt{2}}{2}$ Angle de s = $\frac{\pi}{4}$ b) affixe du centre : 4 0,25 3. A Ω = B Ω = C Ω donc Ω est le centre du cercle circonscrit au triangle ABC	3.	les points A ₁ , I et B ₁ sont alignés (toute méthode acceptée)	0,5
(toute méthode acceptée) . Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB . L'existence d'une similitude directe transformant le triangle ABC en A ₁ B ₁ C ₁ est admise ; donc, si l'écriture a été recherchée sous la forme $z'=az+b$, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de $s = \frac{\pi}{4}$ b) affixe du centre : 4 0,25 3. $A\Omega = B\Omega = C\Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC	4.	$(\overrightarrow{IB}, \overrightarrow{IB_1}) = \dots = \arg \frac{2}{3}(1+i) = \frac{\pi}{4}$	0,5
Partie B 1. Ecriture complexe de la similitude directe, toute méthode acceptée NB . L'existence d'une similitude directe transformant le triangle ABC en A ₁ B ₁ C ₁ est admise ; donc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de s = $\frac{\sqrt{2}}{2}$ Angle de s = $\frac{\pi}{4}$ b) affixe du centre : 4 3. $A\Omega = B\Omega = C\Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC	5.	-	0,5
1. Ecriture complexe de la similitude directe, toute méthode acceptée 0,5 NB . L'existence d'une similitude directe transformant le triangle ABC en A ₁ B ₁ C ₁ est admise ; donc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de s = $\frac{\sqrt{2}}{2}$ Angle de s = $\frac{\pi}{4}$ b) affixe du centre : 4 0,25 3. $A \Omega = B \Omega = C \Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC		(toute méthode acceptée).	
NB . L'existence d'une similitude directe transformant le triangle ABC en A ₁ B ₁ C ₁ est admise ; donc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de s = $\frac{\sqrt{2}}{2}$ Angle de s = $\frac{\pi}{4}$ b) affixe du centre : 4 3. A $\Omega = B$ $\Omega = C$ Ω donc Ω est le centre du cercle circonscrit au triangle ABC	Partie B		
admise; donc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 équations à deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, la vérification pour le troisième couple n'est pas nécessaire. Autre méthode acceptée : vérification que l'écriture donnée est celle d'une similitude directe transformant le premier triangle en le second 2. a) Rapport de $s = \frac{\sqrt{2}}{2}$ Angle de $s = \frac{\pi}{4}$ b) affixe du centre : 4 3. $A \Omega = B \Omega = C \Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC	1.	Ecriture complexe de la similitude directe, toute méthode acceptée	0,5
Angle de s = $\frac{\pi}{4}$ b) affixe du centre : 4 $0,25$ $0,25$ $0,25$ $0,25$	équations à la vérification Autre métho	nc, si l'écriture a été recherchée sous la forme z'=az+b, en résolvant le système de 2 deux inconnues complexes a et b obtenu en utilisant deux couples de points homologues, on pour le troisième couple n'est pas nécessaire. ode acceptée : vérification que l'écriture donnée est celle d'une similitude directe	
b) affixe du centre : 4 $0,25$ 3. $A \Omega = B \Omega = C \Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC	2.	a) Rapport de s = $\frac{\sqrt{2}}{2}$	0,25
b) affixe du centre : 4 $0,25$ $A \Omega = B \Omega = C \Omega \text{ donc } \Omega \text{ est le centre du cercle circonscrit au triangle ABC}$		Angle de s = $\frac{\pi}{4}$	0,25
3. $A \Omega = B \Omega = C \Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC 0,5		•	0,25
	3.	$A \Omega = B \Omega = C \Omega$ donc Ω est le centre du cercle circonscrit au triangle ABC	0,5

PROBLEM	Е	11 points
CONJECTU a) b)	la fonction f semble croissante sur [-3; 2] la courbe semble se situer au dessous de l'axe des abscisses pour x négatif et au dessus pour x positif (intersection en O)	0,25 0,25
PARTIE A	$f'(x) = (x^2 + 2x)e^{x-1} - x$ f'(x) = x g(x)	0,5 0,25
2.	a) $\lim_{x \to +\infty} g(x) = +\infty$ et $\lim_{x \to -\infty} g(x) = -1$. b) $g'(x) = (x+3)e^{x-1}$;	0,5
	g'(x) a le signe de $(x+3)$. Etude correcte du signe	0,25
	 c) g décroît sur]-∞ ;-3] et croît sur [-3 ;+ ∞ [Tableau de variations complet (limites incluses) 	0,25 0,25
	 d) * D'après le tableau de variations précédent, g est strictement négative sur]-∞;-3] et, comme g(-3)<0, elle s'annule une seule fois sur [-3;+∞[. * g(0,20)<0 et g(0,21)>0, donc 0,20 < α < 0,21 	0,5 0,25
	e) g est strictement négative sur $]-\infty$; $\alpha[$, strictement positive sur $]\alpha$; $+\infty[$ et s'annule en α .	0,25
3.	a) $f'(x) = x g(x)$ d'où $f'(x)$ est strictement positive sur $]-\infty$; $[0]$ et $]\alpha$; $+\infty$ [$f'(x)$ est strictement négative sur $]0$; α [$f'(x)$ est nulle en $[0]$ et $[0]$.	0,5
	 b) Sens de variation correct (rédigé ou matérialisé dans un tableau) c) La première conjecture est fausse, la fonction n'est pas croissante sur [-3;2] 	0,25

]]	PARTII	ΞВ											:	
		1.	α est so	olution de	e g(x) = 0	, donc te	I que e^{lpha-}	$1 = \frac{1}{\alpha + 2}$	D'où	l'égalité			0,5	
		2.	a) <i>h</i> '(<i>x</i>	$= \frac{-x^2(x)}{(x+x)^2}$	$\frac{(2+3)}{(2)^2}$								0,5	
			h'(x	$) \le 0$, don	c h est de	écroissan	ite sur [0;	1]					0,25	
			b) Encadrement de $f(\alpha)$ $0.20 < \alpha < 0.21$ donc $h(0.21) < h(\alpha) < h(0.20)$ Comme $h(\alpha) = f(\alpha)$, on a $-0.0021 < f(\alpha) < -0.0018$								0,5			
		3.	a) les al	bscisses d	les points	d'inters	ection de	la courbe	C avec (x	('x) sont (0 et (1-ln:	2)	0,5	
	b) D'après le tableau de variation de f , la courbe C est au dessous de $(x'x)$ si $x \in]-\infty; 1-\ln 2[$, et au dessus si $x \in]1-\ln 2; +\infty[$.										0,25			
			c) la sec	conde cor	ijecture e	est donc i	fausse .						0,25	
I	PARTIE	EC												
		1.	Tableau de valeurs									0,75		
I	-0,20		-0,15	-0,10	-0,05	0	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,
	-80.10-4		-41.10 ⁻⁴	-17.10-4	-4.10-4	0.10-4	-3.10-4	-9.104	-16.10-4	-20.104	-17.10-4	-3.10-4	27.10-4	78
	2. Tracé de la courbe sur [-0,20;0,40] : (non respect de l'unité : -0,25)									0,75				
F	PARTIE	E D												
 Par double « IPP », une primitive de la fonction x → x²e² est : x → (x²-2x+2)e² Une primitive F de f est définie sur R par F(x) = (x²-2x+2)e² .e⁻¹ - x³/6 										0,75				
										0,5				
3. Aire du domaine D, en unités d'aires : $A(D) = -\int_{0}^{1-\ln 2} f(x) dx = F(0) - F(1-\ln 2)$										0,5				
$A(D) = \frac{2}{e} - \frac{1}{3} - \frac{\ln 2}{2} - \frac{\ln^3 2}{6}$ (autre expression correcte acceptée)														
Unité d'aire : 20000cm^2 , d'où l'aire de D en cm² = $20000 \text{ A(D)} \approx 7 \text{ cm}^2$										0,25				