∽ Baccalauréat L La Réunion juin 2004 ∾

Le candidat traitera obligatoirement trois exercices
OBLIGATOIREMENT L'exercice 1 et l'exercice 2
AU CHOIX: L'exercice 3 ou l'exercice 4.
L'usage de la calculatrice est autorisé pour cette épreuve.

EXERCICE 1 OBLIGATOIRE

7 points

On considère la fonction numérique f définie sur l'intervalle [1; 12] par :

$$f(x) = x - 1 - 4\ln x.$$

On note $\mathscr C$ la courbe représentative de la fonction f dans un repère orthonormal d'unité graphique : 1 cm.

1. a. Calculer la dérivée f' de la fonction f. Vérifier que, pour tout x de l'intervalle [1; 12], f'(x) peut s'écrire :

$$f'(x) = \frac{x-4}{x}.$$

- **b.** Étudier le signe de f' sur l'intervalle [1; 12], et en déduire le tableau de variation de f.
- c. Déterminer une équation de la tangente Δ à la courbe en son point B d'abscisse 1.
- **2. a.** Recopier et compléter le tableau suivant en donnant les valeurs arrondies à 0,1 près.

	х	1	2	3	4	6	8	10	11	12
Γ	f(x)									

b. Tracer la courbe $\mathscr C$ et la droite Δ dans le même repère sur la feuille de papier millimétré fournie.

Formulaire : La dérivée de la fonction ln sur l'intervalle]0; $+\infty[$ est la fonction qui, à x, associe $\frac{1}{x}$.

EXERCICE 2 OBLIGATOIRE

7 points

Il est assez curieux qu'une infinité de termes positifs que l'on ajoute au fur et à mesure puisse donner un résultat fini. Ainsi le Grec Zénon prétendait, au IV^e siècle avant J-C., démontrer qu'il est impossible d'aller d'un point à un autre car « avant d'atteindre le but, il faut arriver au milieu de la route, puis atteindre le milieu du trajet à parcourir, et ainsi de suite. Comme il y a une infinité d'étapes à observer, on ne peut arriver au bout de son voyage ».

Les nombres et leurs mystères - A. Warusfel

I - Construction de la figure :

Construire un segment [AB] puis,

- 1. le milieu A_0 de [AB],
- **2.** le milieu A_1 de $[A_OB]$,
- **3.** le milieu A_2 de $[A_1B]$.

II - Utilisation d'une suite numérique :

On construit ainsi une suite de points A_n tels que pour tout n entier supérieur ou égal à 1, A_n est le milieu du segment $[A_{n-1}B]$.

On suppose que AB = 2. On pose d_0 = AA₀, d_1 = A₀A₁, d_2 = A₁A₂ et pour tout entier $n \ge 1$: $d_n = A_{n-1}A_n$.

- **1.** On a $d_0 = 1$; calculer d_1 et d_2 .
- **2.** On admet que, pour tout entier naturel $n: d_{n+1} = \frac{1}{2}d_n$.
 - **a.** En déduire que la suite (d_n) est une suite géométrique dont on précisera le premier tenue et la raison.
 - **b.** Donner l'expression de d_n en fonction de n.
- **3.** On pose $S_n = d_0 + d_1 + d_2 + \cdots + d_n$.
 - **a.** Vérifier que $S_n = 2\left[1 \left(\frac{1}{2}\right)^{n+1}\right]$.
 - **b.** Quelle est la limite de S_n lorsque n tend vers l'infini?
 - c. En donner une interprétation géométrique.

Formulaire : Somme des n+1 premiers termes d'une suite géométrique de premier terme u_0 et de raison q (avec q?1) :

$$S_n = u_0 + u_1 + u_2 + \dots + u_n = \frac{1 - q^{n+1}}{1 - q}.$$

EXERCICE 3 AU CHOIX

6 points

Le code barre à 13 chiffres ou EAN 13 (European Article Number) est un code constitué de 13 chiffres compris entre 0 et 9, utilisé pour classifier les produits de la grande distribution :

$$a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} a_{11} a_{12} a_{13}$$

On calcule $S = a_1 + 3a_2 + a_3 + 3a_4 + a_5 + 3a_6 + a_7 + 3a_8 + a_9 + 3a_{10} + a_{11} + 3a_{12} + a_{13}$. Le code est accepté lorsque : $S \equiv 0 \pmod{10}$, il est refusé sinon.

1. En pratique

On considère le code A = 97 80130 51518 6.

- a. Vérifier que A est accepté.
- **b.** Au lieu du code A, on a saisi le code B = 97 70130 51518 6 en commettant une erreur sur le troisième chiffre. Montrer que le code B est refusé.
- c. Lors de la saisie du code A, deux chiffres voisins ont été permutés.
 Le code C = 97 80135 01518 6 est-il accepté ou refusé?
 Le code D = 97 80130 15518 6 est-il accepté ou refusé?
- 2. Effet d'une erreur de saisie sur le quatrième chiffre
 - a. On désigne par E le code 97 8*n*130 515186 où *n* représente un chiffre. Si n = 0, on retrouve le code A donc E est accepté.
 Déterminer toutes les valeurs de n pour lesquelles E est accepté.
 - **b.** En déduire qu'une erreur de saisie sur le quatrième chiffre du code A est toujours détectée.

EXERCICE 4 AU CHOIX

6 points

On lance simultanément deux dés équilibrés (un bleu et un vert), dont les faces sont numérotées de 1 à 6.

(On suppose qu'il y a équiprobabilité pour tous les couples de nombres possibles). On note S la somme des nombres obtenus.

(N.B.: Tous les résultats des calculs de probabilité seront donnés sous forme de fractions).

- 1. **a.** Compléter le tableau n^0 1 (en annexe, à rendre avec la copie si l'exercice 4 est choisi) par la somme des nombres obtenus.
 - **b.** Compléter le tableau $n^{\rm o}$ 2 (en annexe, à rendre avec la copie si l'exercice 4 est choisi)

(P(S) représente la probabilité que la somme des deux dés soit égale à S).

- **2. a.** Déterminer la probabilité de l'évènement A : « $5 \le S \le 9$ ».
 - **b.** Montrer que la probabilité d'obtenir une somme S impaire est égale à $\frac{1}{2}$.
- **3.** On lance les deux dés, trois fois de suite. À l'issue de chaque lancer on note la somme obtenue.
 - a. Montrer que la probabilité d'obtenir exactement trois fois une somme impaire est égale à $\frac{1}{8}$.
 - **b.** Calculer la probabilité d'obtenir exactement deux fois une somme impaire.

Annexe de l'exercice 4 (à rendre avec la copie si l'exercice 4 est choisi)

Tableau nº 1: Somme des nombres obtenus.

bleu vert	1	2	3	4	5	6
1	2					
2	3					
3	4					
4	5		7			
5	6	7				
6	7					

Tableau nº 2:

S	2	3	4	5	6	7	8	9	10	11	12
D(S)					5						
I (3)					36						