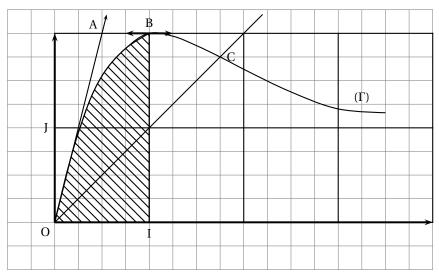
Exercice 1 5 points

Commun à tous les candidats

Dans un repère orthonormal du plan $(0, \vec{i}, \vec{j})$ d'unités graphiques 2 cm, la courbe (Γ) , tracée ci-dessous, est la représentation graphique d'une fonction g définie et dérivable sur l'intervalle [0; 3,5].

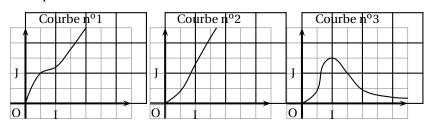
- I et J sont les points du plan tels que $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$;
- C est le point de (Γ) situé sur la bissectrice de l'angle ÎOJ;
- (OA) est la tangente en O à (Γ);
- ${\mathscr S}$ est la surface hachurée sur la figure ci-dessous :



- 1. Par lecture graphique, répondre aux questions suivantes :
 - **a.** Quel est le tableau de variations de g sur [0; 3,5]?
 - **b.** Quelles sont les valeurs de g'(0) et de g'(1)?
 - c. Quelles sont les coordonnées du point C?
 - **d.** Résoudre l'inéquation $g(x) \ge x$ sur [0; 3,5].
- **2.** Définir la surface $\mathscr S$ par un système d'inéquations et déterminer graphiquement un encadrement de l'aire de $\mathscr S$ d'amplitude 2 cm².

Rappel : l'aire d'un trapèze est donnée par la formule : $\mathcal{A} = \frac{(B+b) \times h}{2}$ où B et b sont les bases du trapèze et h sa hauteur.

3. On suppose que l'une des trois courbes ci-dessous est la représentation graphique de la primitive de la fonction *g* s'annulant en 0. En justifiant l'élimination de deux des courbes, indiquer celle qui est la représentation graphique de cette primitive.



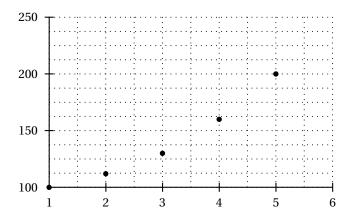
EXERCICE 2 5 points

Pour les candidats n'ayant pas suivi l'enseignement de spécialité

Un fournisseur d'accès à internet, souhaite faire une prévision du nombre de ses abonnés pour l'année 2005; il établit un relevé du nombre des abonnés des années 2000 à 2004.

Il affecte l'indice 100 à l'année 2000 pour établir la statistique des abonnés et consigne les données sur le tableau et le graphique ci-dessous :

Année	2000	2001	2002	20003	2004
Rang x_i	1	2	3	4	5
Indice y_i	100	112	130	160	200



Partie A

- 1. Le nombre d'abonnés était de 2040 pour l'année 2000, de combien est-il pour l'année 2004?
- **2.** Quel est le pourcentage d'augmentation du nombre d'abonnés entre 2003 et 2004?
- **3.** Quelle est l'équation de la droite de régression de *y* en *x* par la méthode des moindres carrés?
- **4.** Quelles prévisions du nombre d'abonnés peut-on faire pour les années 2005 et 2010?
 - On arrondira à l'entier le plus proche.

Partie B

Le fournisseur décide d'utiliser un changement de variable pour obtenir un autre ajustement, il crée un nouveau tableau en posant $Y = \ln(y)$.

1. Recopier et compléter le tableau. On donnera des valeurs approchées à 10^{-2} .

x_i	1	2	3	4	5
$Y_i = \ln y_i$					

- **2.** Dans le plan muni d'un repère, construire le nuage de points de coordonnées $(x_i; Y_i)$ et la droite de régression de Y en x donnée par l'équation : Y = 0,17x+4,39.
- **3.** Exprimer le nombre d'abonnés n_i en fonction du rang x_i de l'année.
- **4.** En déduire une nouvelle prévision du nombre d'abonnés pour les années 2005 et 2010.

Pour les candidats ayant suivi la spécialité mathématique

Utiliser le DOCUMENT RÉPONSE DONNÉ EN ANNEXE

Dans l'espace muni d'un repère orthonormal $(0, \vec{t}, \vec{j}, \vec{k})$, on désigne par \mathscr{S} l'ensemble des points M(x; y; z) de l'espace tel que z = 3xy. On dit \mathscr{S} est la surface d'équation z = 3xy.

Une courbe de niveau de cote z_0 est l'intersection d'un plan d'équation $z = z_0$, parallèle au plan (xOy) avec la surface \mathcal{S} . On définit de façon identique une courbe de niveau d'abscisse x_0 et une courbe de niveau d'ordonnée y_0 .

- 1. Soient les courbes de niveau d'abscisse 1, d'abscisse $\frac{3}{2}$ et d'abscisse 2. Tracer les projections orthogonales de ces courbes de niveau dans le plan (yOz) sur la figure 1 du document réponse.
- 2. a. Quelle est la nature des courbes de niveau d'abscisse constante?
 - **b.** Montrer que les courbes de niveau de cote constante non nulle sont des hyperboles.
- **3.** Sur la figure 2 sont représentées trois courbes \mathscr{C}_1 , \mathscr{C}_2 et \mathscr{C}_3 représentant les projections orthogonales dans le plan (xOy) de trois courbes de niveau de cote constante k.

Préciser, en le justifiant, la valeur de *k* associée à chaque courbe.

- **4.** Le point A' représenté sur la courbe \mathcal{C}_2 de la figure 2 est la projection orthogonale dans le plan (xOy) d'un point A(x; y; z), de la surface \mathcal{S} .
 - **a.** Déterminer les coordonnées du point A dans le repère $(0, \vec{i}, \vec{j}, \vec{k})$.
 - **b.** Préciser les coordonnées du point A", projeté orthogonal de A dans le plan (*y*O*z*), puis placer ce point A" sur la figure 1.
- **5.** Soit \mathscr{P} le plan d'équation 3x + 6y z 6 = 0.
 - **a.** Montrer que le point A appartient au plan \mathscr{P} .
 - **b.** Montrer que le plan *P* contient la courbe de niveau d'abscisse 2.
 - **c.** Démontrer que l'intersection de la surface $\mathscr S$ et du plan $\mathscr P$ est la réunion de deux droites : la courbe de niveau d'abscisse 2 et une autre droite que l'on déterminera par un système d'équations cartésiennes.

On pourra utiliser la factorisation x + 2y - xy - 2 = (x - 2)(1 - y).

EXERCICE 3 Commun à tous les candidats

5 points

Tableau d'informations nº 1.

				1			
x	$-\infty$	-1		$\overline{2}$		2	$+\infty$
Signe de $u(x)$	+	•	_		_	•	+
Signe de $u'(x)$	_		-	•	+		+

Le tableau d'informations n^01 ci-dessus fournit des informations sur une fonction u définie et dérivable sur \mathbb{R} .

- 1. Établir un tableau des variations de la fonction u. On considère maintenant les fonctions f et g définies par $f(x) = \ln[u(x)]$ et $g(x) = e^{u(x)}$ où u désigne la fonction de la question précédente.
- **2. a.** Une des deux affirmations suivantes est fausse, laquelle ? Justifier en précisant le bon ensemble de définition :

Affirmation 1 : « La fonction f est définie sur \mathbb{R} »;

Affirmation 2 : « La fonction g est définie sur \mathbb{R} ».

- **b.** Donner les variations des fonctions f et g. Énoncer le(s) théorème(s) utilisé(s).
- **c.** Déterminer, en justifiant avec soin, $\lim_{\substack{x \to 2 \ x>2}} f(x)$
- **d.** Résoudre dans \mathbb{R} l'équation g(x) = 1.
- **3.** Voici d'autres informations relatives à la fonction u et à sa dérivée u'.

Tableau d'informations n°2.

x	-2	0	$\frac{1}{2}$	2	3
u(x)	4	-2	$-\frac{9}{4}$	0	4
u'(x)	-5	1	0	3	5

Terminer chacune des deux phrases **a.** et **b.** par la réponse qui vous semble exacte, parmi celles proposées dans les cadres ci-dessous, en justifiant votre choix.

a. La tangente à la courbe représentative de la fonction *g* au point d'abscisse 2 est parallèle :

à l'axe des abscisses	• à la droite d'équation	• à la droite d'équation
	y = x	y = 3x

b. Le nombre f'(-2):

			4	5	5
• n'ex	iste pas	• vaut –20	• vaut – - 5	• vaut $-\frac{1}{4}$	• vaut -

EXERCICE 4 6 points

Commun à tous les candidats

On propose aux élèves, Quentin, Nicolas et Lucien de répondre à un Q.C.M. comportant quatre questions dont voici le barème et les instructions :

Pour chaque question, une seule des quatre propositions A, B, C ou D est exacte. L'élève recopie sur sa feuille une grille de réponses présentée comme ci-dessous :

Question	Réponse :
	A, B, C, D
1	
2	
3	
4	

Une bonne réponse rapporte 1 point ; une mauvaise réponse enlève 0,5 point.

L'absence de réponse n'apporte ni n'enlève aucun point.

Si le total de points est négatif, la note globale attribuée à l'exercice est 0.

Les trois candidats répondent correctement à la première question.

- 1. Quentin choisit de ne pas répondre à la question ^o2 et de donner une réponse à chacune des deux dernières questions, en choisissant au hasard et de façon équiprobable, l'une des quatre réponses proposées.
 - a. Quelles notes peut-il obtenir à ce Q.C.M.?
 - b. Combien de grilles différentes peut-il remplir?
 - c. Quelle probabilité a-t-il de ne faire aucune faute?
 - **d.** Quelle probabilité a-t-il de faire deux fautes?
 - **e.** Construire un tableau qui associe, à chaque total de points, sa probabilité. En déduire l'espérance mathématique de la note obtenue.
- **2.** Nicolas adopte la stratégie de donner une réponse à chacune des trois dernières questions en choisissant au hasard et de façon équiprobable l'une des quatre réponses proposées.
 - a. Quelles notes peut-il obtenir à ce Q.C.M.?
 - b. Combien de grilles différentes peut-il remplir?
 - c. Quelle probabilité a-t-il de ne faire aucune faute?
 - d. Quelle probabilité a-t-il de faire trois fautes?
 - **e.** Construire un tableau qui associe, à chaque total de points, sa probabilité. En déduire l'espérance mathématique de la note obtenue.
- **3.** Lucien choisit de ne répondre à aucune des trois dernières questions. Classer les stratégies de Quentin, Nicolas et Lucien.

ANNEXE

DOCUMENT RÉPONSE À RENDRE AVEC LA COPIE

(Exercice 2 spécialité)

