CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

DANG CANBANTUR BANDACT BENTERANT

SESSION 2005

CORRIGE

MATHEMATIQUES

- Série S -

Ce document comporte 5 pages numérotées de 1 à 5

ÉLÉMENTS DE CORRECTION

Il est rappelé que ce document est à l'usage exclusif des jurys. La règle de confidentialité relative aux commissions d'entente et aux travaux des jurys s'applique à son contenu.

EXERCICE 1 (4 points)

Partie A

Soient deux suites (u_n) et (v_n) adjacentes, définies sur N, telles que (u_n) est croissante et (v_n) décroissante.

La suite (u_n) étant croissante, pour tout n appartenant à N, on a $u_0 \le u_n$; or, on a aussi $u_n \le v_n$, donc $u_0 \le v_n$. On en déduit que la suite (v_n) , qui est décroissante, est minorée par u_0 ; elle est donc convergente; soit a sa limite.

La suite (v_n) étant décroissante, pour tout n appartenant à N, on a $v_0 \ge v_n$; or, on a aussi $u_n \le v_n$, donc $u_n \le v_0$. On en déduit que la suite (u_n) , qui est croissante, est majorée par v_0 et donc que (u_n) est convergente; soit b sa limite.

On a $\lim_{n\to +\infty} v_n = a$ et $\lim_{n\to +\infty} u_n = b$, avec a et b réels; donc $\lim_{n\to +\infty} (u_n - v_n) = b - a$; or, on sait que $\lim_{n\to +\infty} (u_n - v_n) = 0$, donc a = b.

Les deux suites (u_n) et (v_n) sont bien convergentes et elles ont la même limite.

Partie B

On a $v_n = \frac{-2}{u_n}$, pour *n* appartenant à **N**.

- 1) Considérons la suite (u_n) définie par $u_n = \frac{1}{n+1}$; (u_n) est convergente (vers 0) et, pour tout n, on a $v_n = -2n-2$, donc (v_n) n'est pas convergente. L'affirmation (1) est fausse.
- 2) Soit (u_n) une suite minorée par 2, c'est-à-dire que, pour tout n appartenant à N, $u_n \ge 2$; alors $\frac{1}{u_n} \le \frac{1}{2}$, d'où $\frac{-2}{u_n} \ge -1$, soit $v_n \ge -1$; (v_n) est bien minorée par -1. L'affirmation (2) est vraie.
- 3) Soit (u_n) définie sur N par $u_n = \frac{1}{n+1}$; (u_n) est décroissante. On a $v_n = -2n-2$, et (v_n) est décroissante; on en déduit que l'affirmation (3) est fausse.
- 4) Soit (u_n) définie sur N par $u_n = (-1)^n$; (u_n) diverge.

On a alors $v_n = \frac{-2}{(-1)^n}$; on en déduit que $v_{2p} = -2$ et $v_{2p+1} = 2$, donc (v_n) diverge aussi. L'affirmation (4) est fausse.

EXERCICE 2, non spécialistes (5 points)

- 1) Le centre du cercle \mathscr{C} est le milieu J de [OA], d'affixe $\frac{1}{2}$, et son rayon est $\frac{OA}{2} = \frac{1}{2}$. Donc, pour tout point M de \mathscr{C} , JM = $\frac{1}{2}$ et $\left| m \frac{1}{2} \right| = \frac{1}{2}$.
- 2) Le point L est l'image du point M par la rotation de centre O et d'angle $\frac{\pi}{2}$, donc l=im. Le point P est l'image du point M par la rotation de centre A et d'angle $-\frac{\pi}{2}$, donc p-1=-i(m-1) et p=-im+1+i.
- 3) a) $\omega = \frac{p+l}{2} = \frac{1+i}{2}$, qui est indépendant de m.

b)
$$J\Omega = \left| \frac{1}{2}i \right| = \frac{1}{2}$$
. Donc $\Omega \in \mathscr{C}$.

De plus $x_{\Omega} = x_{J} = \frac{1}{2}$ et $y_{\Omega} > 0$, donc Ω est le point de \mathscr{C} tel que $(\overrightarrow{JA}; \overrightarrow{J\Omega}) = \frac{\pi}{2}$.

4) a) KN = $|i(2m-1)| = |2i| \times |m-\frac{1}{2}| = 2JM$. Or JM est constante, égale à $\frac{1}{2}$, donc KN est constante, égale à 1.

Autres solutions : en montrant que le triangle KMN est rectangle en M et en lui appliquant le théorème de Pythagore ou en montrant que les triangles KMN et OMA sont isométriques.

- b) $e^{i\frac{\pi}{2}}(n-\omega) = (1+i)m-2-2i = k-\omega$, donc K est l'image de N par la rotation de centre Ω et d'angle $\frac{\pi}{2}$. Le triangle Ω NK est rectangle et isocèle en Ω .
- 5) Le triangle Ω NK étant rectangle et isocèle en Ω , on a Ω N = Ω K = $\frac{KN}{\sqrt{2}}$. D'où Ω N = Ω K = $\frac{1}{\sqrt{2}}$, d'après le 4). Donc N appartient au cercle de centre Ω de rayon $\frac{1}{\sqrt{2}}$.

EXERCICE 2, spécialistes (5 points)

Partie A

- 1) a) Le rapport de la similitude f est égal à $\frac{MR}{MN} = \frac{1}{\sqrt{2}}$; son angle est $(\overline{MN}, \overline{MR}) = -\frac{\pi}{4}$.
 - b) En utilisant l'écriture complexe de la similitude f, on obtient :

$$r-m=\frac{1}{\sqrt{2}}e^{-i\frac{\pi}{4}}(n-m), \text{ d'où } r=\frac{1}{2}(1-i)n+\frac{1}{2}(-1+i)m+m=\frac{1+i}{2}m+\frac{1-i}{2}n.$$

2) L'isobarycentre du quadrilatère MNPQ a pour affixe $\frac{1}{4}(m+n+p+q)$.

L'isobarycentre du quadrilatère RSTU a pour affixe Z tel que :

$$Z = \frac{1}{4}(r+s+t+u) = \frac{1}{8}[(1+i)m+(1-i)n+(1+i)n+(1-i)p+(1+i)p+(1-i)q+(1+i)q+(1-i)m],$$

c'est-à-dire $Z = \frac{1}{4}(m+n+p+q)$. Les quadrilatères MNPQ et RSTU ont donc le même isobarycentre.

3) a) On a
$$u - s = \frac{1}{2}[(1+i)q + (1-i)m - (1+i)n - (1-i)p] = \frac{1}{2}[(1+i)(q-n) + (1-i)(m-p)]$$

et $t - r = \frac{1}{2}[(1+i)(n-m) + (1-i)(n-m)]$ d'où :

et
$$t-r=\frac{1}{2}[(1+i)(p-m)+(1-i)(q-n)]$$
, d'où:

$$i(t-r) = \frac{1}{2}[(i-1)(p-m) + (1+i)(q-m)] = \frac{1}{2}[(1-i)(m-p) + (1+i)(q-n)] = u-s.$$

b) De l'égalité précédente on en déduit que $\frac{u-s}{t-r}$ = i ce qui se traduit géométriquement par

$$\frac{SU}{RT} = 1$$
 et $(\overrightarrow{RT}, \overrightarrow{SU}) = \frac{\pi}{2}$.

Les longueurs RT et SU sont égales et les droites (RT) et (SU) sont perpendiculaires.

Partie B

1) Les points R et T d'une part, et S et U d'autre part, sont distincts ; il existe donc une unique similitude directe qui transforme R en S et T en U.

D'après les résultats de la partie A, question 3) b), le rapport de cette similitude est 1 et son angle $\frac{\pi}{2}$; cette similitude est donc une rotation g.

2) Soit Ω le centre de la rotation g; on a $\Omega R = \Omega S$ et $\Omega T = \Omega U$, donc Ω appartient à la médiatrice de [RS] et à celle de [TU].

Dans le cas de la figure, les médiatrices de [RS] et [TU] sont concourantes, donc Ω est le point d'intersection de ces deux médiatrices. D'où la construction.

EXERCICE 3 (5 points)

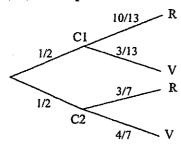
1) a) Les valeurs prises par X sont 0, 1, 2 et 3. Le nombre de choix possibles est $\binom{13}{3}$ = 286.

$$p(X=0) = \frac{\binom{3}{3}}{286} = \frac{1}{286} \approx 0,003 \; ; \; p(X=1) = \frac{\binom{3}{2} \times \binom{10}{1}}{286} = \frac{15}{143} \approx 0,104 \; ;$$

$$p(X=1) = \frac{\binom{3}{1} \times \binom{10}{2}}{286} = \frac{135}{286} \approx 0,472, \ p(X=3) = \frac{\binom{10}{3}}{286} = \frac{60}{143} \approx 0,419.$$

b) E(X) =
$$\frac{30+2\times135+3\times120}{286} = \frac{30}{13} \approx 2,307$$
.

2) a) Arbre pondéré:



b)
$$p(R) = \frac{10}{13} \times \frac{1}{2} + \frac{3}{7} \times \frac{1}{2} = \frac{109}{182} \approx 0,598$$

b)
$$p(R) = \frac{10}{13} \times \frac{1}{2} + \frac{3}{7} \times \frac{1}{2} = \frac{109}{182} \approx 0,598$$
.
c) $p_R(C_1) = \frac{P(C_1 \cap R)}{P(R)} = \frac{10}{26} \times \frac{182}{109} = \frac{70}{109} \approx 0,642$.

3) a)
$$p_n = 1 - \left(\frac{73}{182}\right)^n$$
.

b) On cherche *n* entier naturel, le plus petit possible, tel que $1 - \left(\frac{73}{182}\right)^n \ge 0.99$, soit $n \ln \frac{73}{182} \le \ln(0.01)$, d'où n = 6.

EXERCICE 4 (6 points)

Partie A

a) Pour tout réel x,
$$f(x) = \frac{3e^{\frac{x}{4}}}{2 + e^{\frac{x}{4}}} = \frac{3e^{\frac{x}{4}}}{e^{\frac{x}{4}} \left(2e^{-\frac{x}{4}} + 1\right)} = \frac{3}{2e^{-\frac{x}{4}} + 1} \left(e^{\frac{x}{4}} \neq 0\right).$$

b)
$$\lim_{x \to +\infty} e^{-\frac{x}{4}} = \lim_{x \to -\infty} e^{x} = 0$$
 donc, d'après la relation du 1) a), $\lim_{x \to +\infty} f(x) = 3$.

$$\lim_{x \to -\infty} e^{-\frac{x}{4}} = \lim_{X \to +\infty} e^{X} = +\infty \text{ donc, de même, } \lim_{x \to -\infty} f(x) = 0.$$

c) La fonction f est dérivable sur \mathbf{R} car la fonction $x \mapsto e^{\frac{-x}{4}}$ est dérivable sur \mathbf{R} et, pour

tout réel x, on a :
$$f'(x) = 3 \times \frac{-2\left(-\frac{1}{4}e^{-\frac{x}{4}}\right)}{\left(1+2e^{-\frac{x}{4}}\right)^2} = \frac{3}{2} \times \frac{e^{-\frac{x}{4}}}{\left(1+e^{-\frac{x}{4}}\right)^2}$$
. La fonction f est donc

strictement croissante sur R.

Partie B

- 1) a) Les solutions de (E_1) sont les fonctions définies sur R par $x \mapsto Ce^{\frac{x}{4}}$, où C est une constante réelle.
 - **b)** D'après la relation du 1) a) et g(0) = 1, on trouve $g(t) = e^{\frac{t}{4}}$.
 - c) g(t) > 3 équivaut à $t > 4 \ln 3$, avec $4 \ln 3 \approx 4,4$. C'est donc à l'issue de 5 années que la population de rongeurs dépassera 300 pour la première fois.
- 2) a) u(0)=1 équivaut à h(0)=1.

On a
$$h = \frac{1}{u}$$
. Donc $u' = \frac{u}{4} - \frac{u^2}{12}$ équivaut à $\frac{-h'}{h^2} = \frac{1}{4h} - \frac{1}{12h^2}$, c'est-à-dire $h' = -\frac{1}{4}h + \frac{1}{12}$.

b) Les fonctions h solutions de $y' = -\frac{1}{4}y + \frac{1}{12}$ sont les fonctions définies sur \mathbb{R} par $t \mapsto Ke^{\frac{-t}{4}} + \frac{1}{3}$, où K est une constante réelle.

On sait que
$$h(0) = 1$$
, donc $h(t) = \frac{2}{3}e^{-\frac{t}{4}} + \frac{1}{3}$. D'où $u(t) = \frac{3}{2e^{-\frac{t}{4}} + 1}$.

c) Pour tout $t \ge 0$, u(t) = f(t). Donc, d'après le résultat de la partie A, la population de rongeurs tend vers 300.