
CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

DOCUMENTS CORRIGES

Corrigé du sujet

Corrigé DR1: Analyse du fonctionnement du monnayeur (Algorigramme de

traitement d'une pièce)

Corrigé DR2 : Commande du moteur d'entraînement du disque de tri

Corrigé DR3 : Analyse du fonctionnement de l'ensemble basculant (Graphe des

liaisons + schéma cinématique)

Corrigé DR4 : Etude du montage de la chape et du support de chape

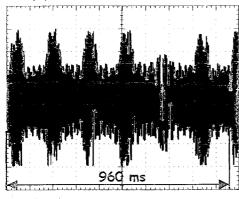
(Représentation d'une solution constructive)

Corrigé DR5 : Dimensionnement de la ventouse (Etude statique)

Corrigé DR6 : Commande du moteur d'entraînement de la couronne

BORNE DE PEAGE AUTOMATIQUE A PIECES

Barème / 100pts


Question 1: /10pts /4pts Question 2: Question 3: /4pts /7pts Question 4: Question 5: /4pts Question 6: /2pts Question 7: /7pts /6pts Question 8: Question 9: /4pts Question 10: /20pts /10pts Question 11: Question 12: /2pts Question 13: /2pts /4pts Question 14: /10pts Question 15: Question 16: /4pts

Question 1: (voir corrigé DR1)

Barème : 10pts (1pt par réponse)

Question 2:

V capteur (V)

6 alvéoles par tour = 960 ms (2pts)

Vitesse de rotation du disque de tri :

 $N_{(tri)} = 60 / 960.10^{-3} = 62,5 \text{ tr/min}$ (2pts)

Question 3:

 $F2 = F1/R1 = 4.9152.10^{-6}/256 = 19200 \text{ Hz}$ F2 = 19.2 KHz (2pts)

Question 4: (voir corrigé DR2)

Barème: 4pts pour les tracés +

D'après les diagrammes temporels P(3 = F3/F4 = 2) (1pt)

On en déduit F3 = R3xF4 = 105,5 Hz F3 = 105,5 Hz (1pt) Le niveau logique qui autorise la rotation du moteur est : CM1 = 0 (1pt)

Le niveau logique qui autorise la rotation du moteur est : CM1 = 0

Question 5: (voir corrigé DR2)

Question 6:

$$F4 = 52,75Hz$$
 $F_{(Hz)} - K$ $N_{(tr/min)}$ avec $K = 60/50 = 1,2$ (doc moteur)

 $N_{(tri)} = K \times F4 = 52,75 \times 1,2 = 63,3 \text{ tr/min} \approx 62,5 \text{ tr/min (mesuré à la question 2)}$ (2pts)

Question 7: (voir corrigé DR2) (1pt pour les résultats sur DR2)

	128	64	32	16	8	4	2	1			[2-4-1]
R2 maxi	1	1	0	0	1	0	1	0		N2 maxi = 120 1 04,10 12 202	
R2 mini	1	0	0	1	1	0	1	0	≽	R2 mini = 128 + 16 + 8 + 2 = 154	F4 maxi \approx 62,34 Hz (2pts)
	$57,03 \text{ tr/min} < N_{(tri)} < 74,8 \text{ tr/min}$ (2pts)										

Question 8: (voir corrigé DR3)

Barème: 1,5 pts par liaison + 1,5pt pour la justification

La sortie de la tige de l'électro-aimant (mouvement de translation suivant l'axe (D, x_2)) provoque la rotation autour de l'axe (A, \bar{z}) de l'ensemble basculant. La transformation de mouvement est assurée par l'axe d'électro-purge qui pivote autour de l'axe (F, \bar{z}) pour s'aligner avec l'axe de l'électro-aimant. La liaison {chape, poussoir} / axe de l'électropurge autorise le glissement de l'extrémité de la tige sur l'axe d'électro-purge.

Question 9: (voir corrigé DR3)

Barème: 1,5 pts par symbole de liaison + 1pt pour la schématisation des pièces

Question 10: (voir corrigé DR4)

Barème:

Coussinets:

Désignation / 1,5pts
Représentation /4pts

Jeux /1pts

Anneaux élastiques :

Désignation / 1,5pts Représentation / 4pts

Jeux /1pts

Vis:

Désignation / 2pts
Représentation /5pts

Question 11:

Isolement de
$$S = \{1 + 2 + 3 + 6\}$$

Bilan

Action de la platine/S en A

$$\vec{A}_{\text{Platine/S}} = \begin{vmatrix} A \\ ? \\ ? \\ ? \\ ? \end{vmatrix} \cot \vec{M}_{\text{A,platine/S}} = \vec{0} \ (2 \text{ inconnues}) \ (/1pt)$$

Action de la ventouse /S en B :

$$\vec{F}_{B} = \begin{vmatrix} B \\ \vec{x}_{1} \\ + \vec{x}_{1} \end{vmatrix} et \vec{M}_{B,Ventouse/S} = \vec{0} \text{ (1 inconnue)} \quad (/1pt)$$

• Action de la terre/1 :

$$\vec{P} = \begin{vmatrix} G \\ Verticale \\ Vers \ le \ bas \\ 30 \ N \end{vmatrix}$$
 et $\overrightarrow{M}G$, $Terre/S = \vec{0}$ (0 inconnue) (/1pt)

Principe fondamental de la statique (/ 1 pt)

Un système matériel est en équilibre sous l'action de trois résultantes si :

- elles sont coplanaires
- leurs directions sont parallèles ou concourantes en un même point
- leur somme vectorielle est nulle

Résolution graphique : (voir corrigé DR5)

(/1,5pts) pour le tracé des directions

(/2,5pts) pour le tracé des intensités

Résultats

 $||\vec{F}_B||$ =5,4N(\langle(120N (force de maintien de la ventouse) \rightarrow la ventouse convient (/1pt)

Question 12:

La couronne de séquestre est en matière plastique transparente et incolore. Ce matèriau permet la visibilité des pièces acceptées (/2pts)

Question 13: ?

Le dispositif { bras + bras support + ressort + galet ø 24 } permet d'assurer l'effort presseur pour qu'il n'y ait pas de glissement entre le galet et la couronne (/2pts)

Question 14:

La couronne du séquestre tourne d'un tiers de tour en 2s dans le sens horaire, donc 30tr/mn. (/1pt)

$$\frac{Ncouronne}{Nmoteur} = \frac{\phi \, galet \, moteur}{\phi \, couronne} = \frac{6,5}{453}$$

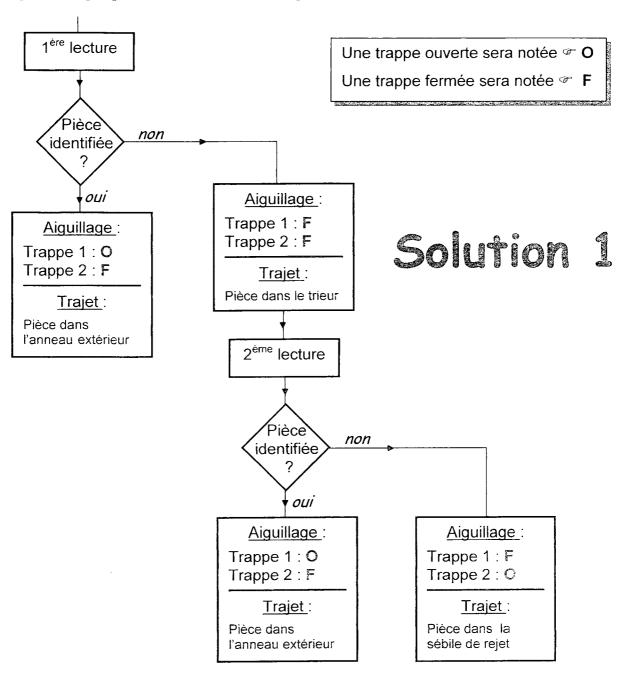
$$d'où \, N_{moteur} = 30 \times \frac{453}{6,5} = 2090,7 \, tr \, / \, mn$$
 (/2pts)

Le sens de rotation du moteur est le sens horaire (le galet ø24 tourne dans le sens antihoraire)(/1pt)

Question 15: (voir corrigé DR6)

Barème:

- modèle équivalent de Q5, Q6 et D10	(1,5pts)	
- schéma équivalent	(1,5pts)	<i>x</i> 2
- sens de Im	(1pt)	AZ.
- tension U_M	(1pt)	

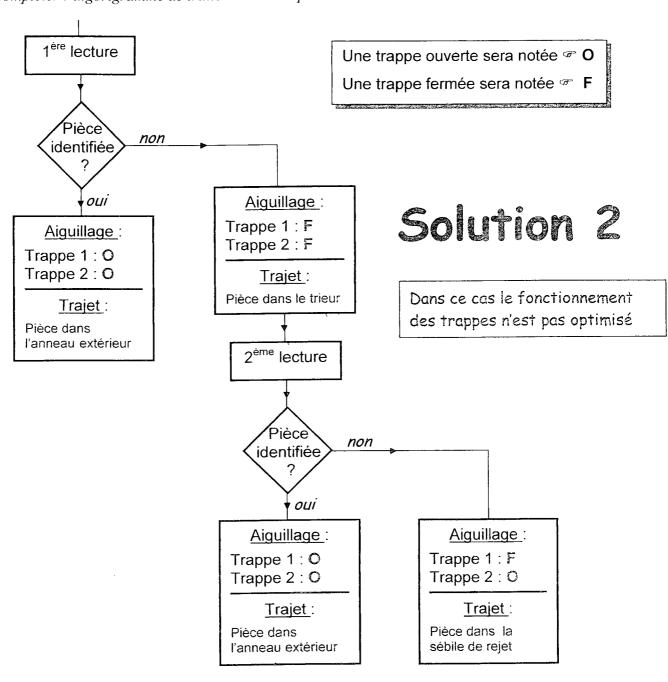

Question 16 : :(voir corrigé DR6)

Barème : (4pts)

Au moment de la commande le moteur est court-circuité par la saturation de Q6 provoquant ainsi le **freinage** et l'arrêt instantanné du moteur.

Question 1:

Compléter l'algorigramme de traitement d'une pièce

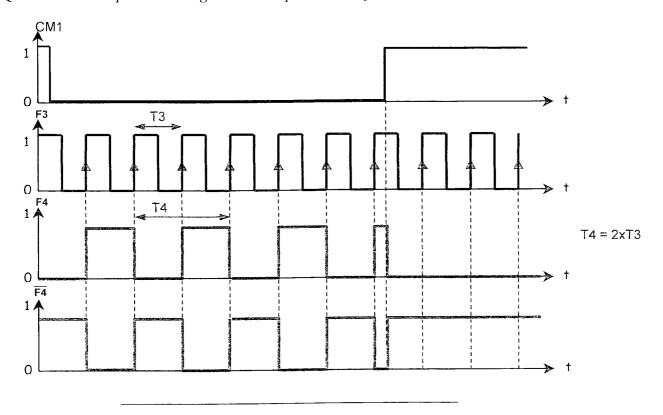


Déterminer le type de chacun des électro-aimants

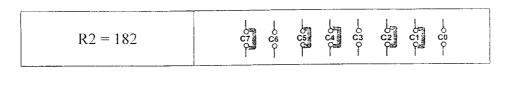
Electro-aimant	Type (*)
Trappe 1	🖾 Poussant 🖵 Tirant
Trappe 2	☐ Poussant Tirant

* cocher la case qui convient

Question 1 :Compléter l'algorigramme de traitement d'une pièce

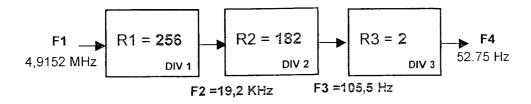


Déterminer le type de chacun des électro-aimants


Electro-aimant	Type (*)
Trappe 1	Poussant Tirant
Trappe 2	Poussant Tirant

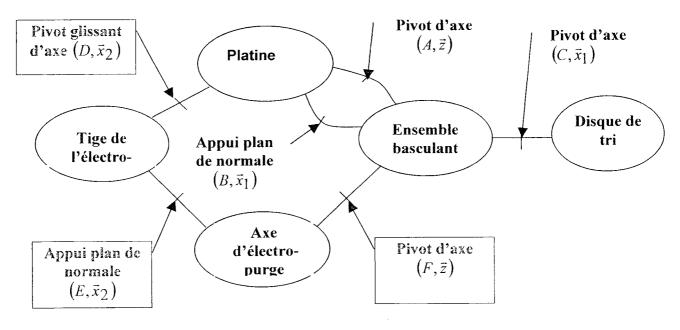
* cocher la case qui convient

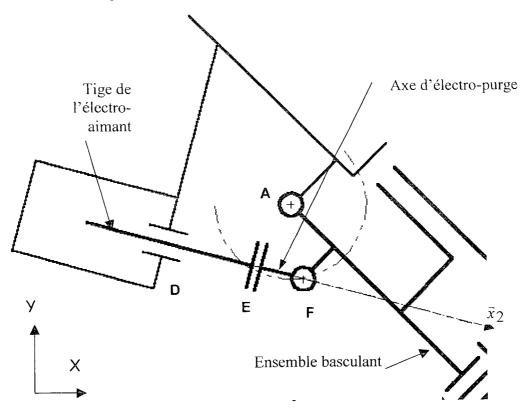
Question 4 : Compléter les diagrammes temporels de la fonction DIV 3

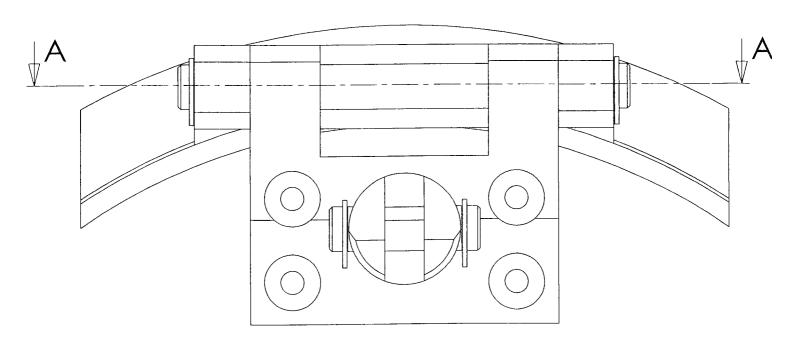


Question 5 : Déterminer la valeur de R2 rapport de division du diviseur programmable (nombre entier) et dessiner les cavaliers qui doivent être mis en place pour cette configuration.

Question 7:


Reporter les valeurs de R1, R2, R3, F2 et F3 trouvées dans les questions précédentes.

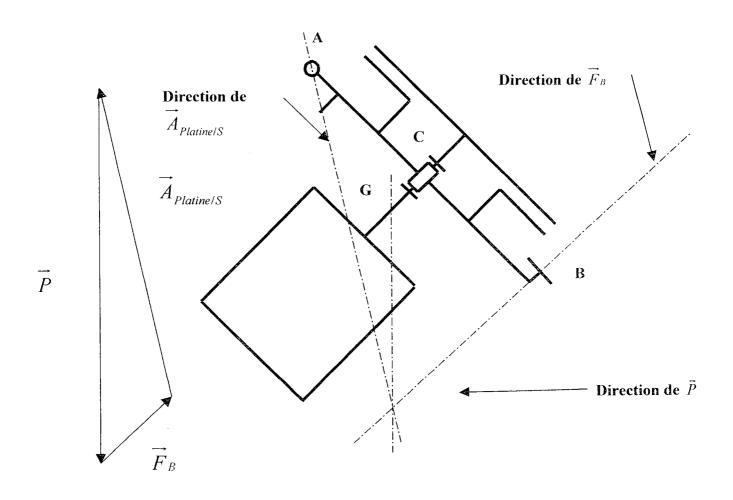

• Déterminer, à l'aide de la documentation technique du moteur M1 (SY 3424), la plage de réglage de la vitesse de rotation du disque de tri.

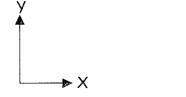

	Fréquence F4	Vitesse de rotation du moteur de tri
Valeurs mini	47,52 Hz	57,03 tr/min
Valeurs maxi	62,34 Hz	74,8 tr/min

Question 8 : Graphe des liaisons

Question 9 : Schéma cinématique minimal.

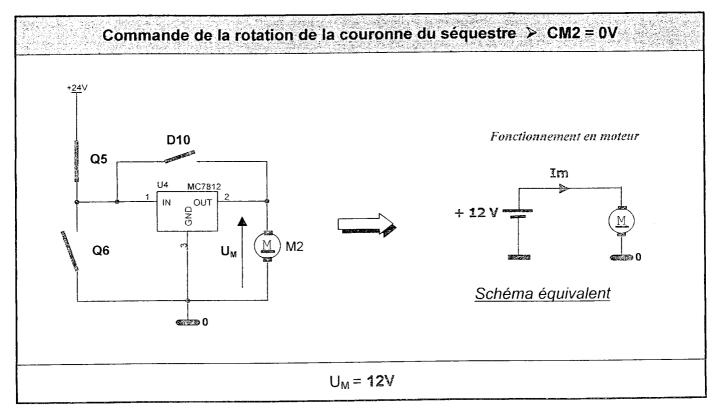
Anneau élastique pour arbre, 8 x 0.8

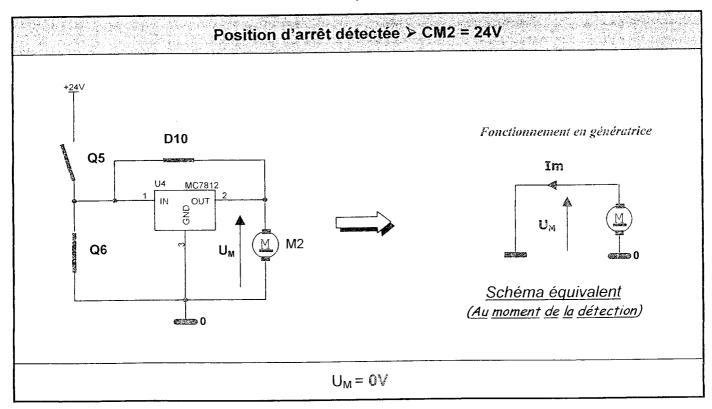

Anneau élastique pour arbre, 8 x 0.8


jeu (0,15)

Coussinet cylindrique fritté, 8 x 12 x 12

Question 11: En appliquant le principe fondamental de la statique au système isolé $S = \{ensemble basculant + disque de tri + moteur de tri \}$ et en adoptant une méthode graphique, déterminer l'effort de maintien \vec{F} B. Vérifier que la ventouse choisie convient.


Echelle: $1mm \rightarrow 0.3N$



$$\|\vec{F}_B\|$$
=5,4 N

Question 15 : Analyse de la commande du moteur d'entraînement de la couronne.

