Baccalauréat Scientifique Série S Session 2009

Actionneur de commande du plan horizontal arrière de l'Airbus A380

CORRECTION

Partie 1

Question n⁹-A:

Voir DR1 - correction

Question n^{\U03b4}-B:

Voir DR2 - correction

Question n^{\u03b4}-C:

Liaison pivot de centre O et d'axe (O,x)

Question n⁹-D:

Degré de liberté autorisé : Rx.

Amplitude du mouvement : 12° (α varie de -10° à +2°)

T_{M \in Bielle / Fuselage:} Arc de cercle de centre A et de rayon [AM]

Question n⁹-E:

Voir DR3 - correction

Question n^{\u03b4}-F:

Course = ([OM2] - [OM1]) * 27

Course totale réelle = 1127 mm (sur le dessin)

Question n^{\coloning}:

Le constructeur donne une course totale de l'écrou égale à $C_{\text{écrou}}$ = 1130 mm. Nous trouvons Course réelle = 1127 mm (presque identique au données constructeur). Nos résultats sont donc compatibles avec la course donnée par le constructeur.

Question n^{\U0304}-H:

Effort de portance maxi (déportance) = 188482 daN (pour α = -10°)

Question n⁹-I:

Effort maxi appliqué sur le NoBack = 60098.5 daN (identique à Fécrou)

Partie II

Question n²-A:

N_{vis} = N_{moteur} * R_{réducteur}

 N_{vis} = 12000*(1/240) = 50 tr/min

Question n2-B:

```
Vécrou = Nvis * pas
```

$$V_{\text{\'ecrou}} = 50 * 35.10^{-3}$$

= 1.75 m/min
= 0.029 m/s

Question n²-C:

```
T_{total} = Course / V_{écrou}
= 1.13 / 0.029
= 38.74 s
```

Question n²-D:

Nous avons trouvé un temps Ttotal égal à 38.74s pour une course totale de l'écrou de 1130 mm.

35s < Ttotal < 40s

Le THSA répond donc au cahier des charges fonctionnel de l'avionneur.

Question n°2-E:

• D'après les formules du DT6, et sachant que $V_a = 115v$ on a : $V_{1min} \approx 243.9v \, V_{1max} \approx 281.7v$ $V_{1moy} \approx 269v \, K_{v1} \approx 0.07 \, ou \, 7\%.$

Question n°2-F:

- Il y a toujours 2 diodes conductrices simultanément.
- D'après les chronogrammes du DT6, on a $f_{v1} = 6$. f_{va} .
- Comme $f_{va} = 400 \text{ Hz alors } f_{v1} = 2.4 \text{ KHz}.$

Question n°2-G:

- Le type de filtre utilisé doit être un passe-bas. La valeur moyenne d'un signal est la composante continue du signal et donc la composante " de fréquence nulle ".
- Voir figure 14 du DR4

Question n°2-H:

Voir figure 15 du DR4

Question n°2-I:

Voir figure 16 du DR4

Question n°2-J:

D'après la méthode des aires $S_1 = S_2$ on trouve $V_{M0} = (2\delta - 1) \cdot V_2$

Partie III

Question n3-A:

 $P_{moteur} = P_{vis} / \eta_{r\'educteur}$ $P_{moteur} = 4298 / 0.9$ = 4775.55 W

Question n3-B:

P = $C.\omega$ donc $C = P / \omega$ $C_{\text{moteur}} = P_{\text{moteur}} / \omega_{\text{moteur}}$ = 4775.55 / (12000* π /30) = 3.8 N.m

Question n3-C:

Point de fonctionnement pour N_0 = 12000 tr/min

 C_{moteur} = 3.8 N.m I_{moteur} = 27 A Rendement = 86 %

Question n°3-D:

Le point de fonctionnement est N_0 = 12000 tr/min, C_M = 3.8 N.m et I_M = 27 A

D'après le DT7 : $V_{M0} = E_0 + R \cdot I_M$ d'ou $E_0 \approx 172v$ $E_0 = K_e \cdot \Omega_0$ et $V_{M0} \approx 195v$

Question n°3-E:

Si la valeur de V_a diminue, la valeur de V_2 diminue et donc la valeur de V_M aussi, entraînant une diminution de la vitesse de rotation on doit alors augmenter la valeur du rapport cyclique pour augmenter la valeur de V_M .

A l'inverse si la valeur de V_a augmente, la valeur de V_2 augmente et donc la valeur de V_M aussi, entraînant une augmentation de la vitesse de rotation on doit alors diminuer la valeur du rapport cyclique pour diminuer la valeur de V_M .

On a V_{M0} = (2 δ -1). V_2 d'où δ = 0.5 (V_{M0}/V_2 +1) Alors $\delta_{MAX} = 0.5 (V_{M0}/V_{2min} +1) \quad \delta_{MAX} \approx 0.97$ $\delta_{MIN} = 0.5 (V_{M0}/V_{2max} +1) \quad \delta_{MIN} \approx 0.82$

Question n°3-F:

La puissance dissipée par un transistor est $P_{tr} = P_{cond} + P_{com}$

Sachant que $V_0 = 2.3V$, $I_k = I_M = 27A$, $R_0 = 0.025\Omega$ et $V_k = V_0 + R_0$. I_k d'ou $V_k = 2.975V$

On a $P_{cond} = V_0 . I_k + R_0 . I_k^2$ alors $P_{cond} = 80.325W$ $P_{com} = 0,5 . V_k . I_k . f . (t_{on} + t_{off})$ $P_{com} = 64.2mW$ D'ou $P_{tr} \approx 80.39W$

Les 4 transistors fonctionnant tous sur une période, la puissance dissipée totale est la somme des puissances dissipée par chaque transistor, alors $P_{cc} = 4.P_{tr}$

P_{cc} ≈ 321.55W

Question n°3-G:

A l'aide du **DT7** on trouve graphiquement $P_{ac} = 55W$

Question n°3-H:

Sachant que la puissance perdue par le filtre est de $P_f = 73$ w, on calcule les pertes totale de

la fonction distribuer :
$$P_T = P_{cc} + P_{ac} + P_f$$
 alors $P_T \approx 449.55W$

Or
$$\eta = 1 - P_T/P_{abs}$$
 avec $P_{abs} = \sqrt{3} \cdot V_a \cdot I_M$ (puissance en triphasé) $P_{abs} \approx 5378W$

Donc
$$\eta \approx 0.916$$

Question n°3-I:

A l'aide de la figure n°23 du document DT3

On a les pertes du moteur hydraulique $P_{hydr} = 9.7\%$ soit un rendement de $\eta_{hyd} = 1 - 0.097$ $\eta_{hvd} = 0.903$

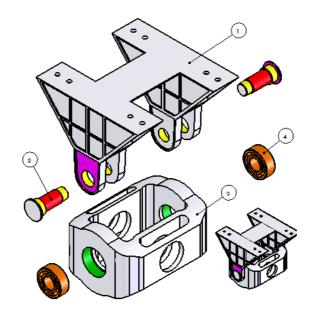
Contrairement à ce que l'on pourrait penser, ce rendement est meilleur que le rendement du moteur électrique ($\eta_{elec} = 0.85$).

Question n°3-J:

A l'aide du document **DT3**Pour les mêmes pertes mécaniques données :

on a les pertes du moteur hydraulique $P_{hydr} = 9.7\%$, et les pertes de la fonction distribuer hydraulique on en déduit les pertes globales $P_{h} = P_{hydr} + P_{dist} = 69.3\%$ d'ou le rendement $P_{hydr} = 9.7\%$, $P_{dist} = 59.6\%$ $P_{h} = P_{hydr} + P_{dist} = 69.3\%$

On a le rendement du moteur électrique $\eta_{M} = 0.85$ Le rendement de la fonction distribuer électrique $\eta \approx 0.916$ D'ou le rendement $\eta_{elec} \approx 0.778$

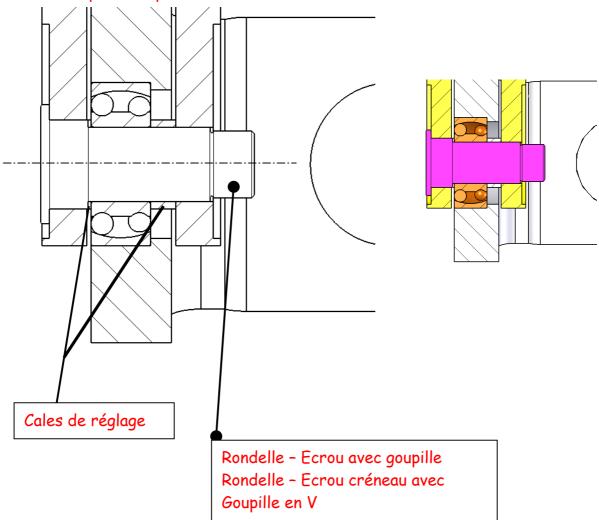

Le système électrique a un bien meilleur rendement que le système hydraulique. C'est grâce essentiellement à la fonction distribuer électrique et non pas au moteur électrique, que l'on améliore le rendement. C'est la raison pour laquelle l'utilisation des systèmes électriques dans ce domaine d'application est croissante.

Partie IV

Question n°4-A:

Coloriage sur DR5

Les bagues extérieures des roulements seront coloriées en vert et les bagues intérieures en rouge.


Question n°4-B:

Degrés de libertés supprimés : Ry, Rz, Tx, Ty, Tz

Question n°4-C:

La solution retenue doit être démontable. Le système étant soumis à des vibrations, il est souhaitable de prévoir une solution garantissant un freinage absolu.

La solution par circlips est à éviter.

Question n°1-A Seule la voie électrique est étudié e

FONCTION	Nom du constituant assurant cette fonction	Grandeur d'entrée : nature	Grandeur de sortie nature	
TRAITER les informations	Microcontrôleur	Signal électrique	Signal électrique	
CONVERTIR l'énergie électrique en énergie mécanique	Moteur électrique	Energie électrique U (volts), I (Ampères)	Energie mécanique de rotation C (N.m), ω (rad/s)	
ADAPTER - TRANSMETTRE l'énergie	Réducteur à engrenages	Energie mécanique de rotation C (N.m), ω (rad/s)	Energie mécanique de rotation C (N.m), ω (rad/s)	
TRANSMETTRE l'énergie mécanique de rotation	Système d'irréversibilité NoBack	Energie mécanique de rotation C (N.m), ω (rad/s)		
TRANSFORMER le mouvement de rotation en mouvement de translation	Système Vis - Ecrou à billes	Energie mécanique de rotation C (N.m), ω (rad/s)	Energie mécanique de translation F (force), V (vitesse)	

Chaîne d'informations et chaîne d'énergie

DR2

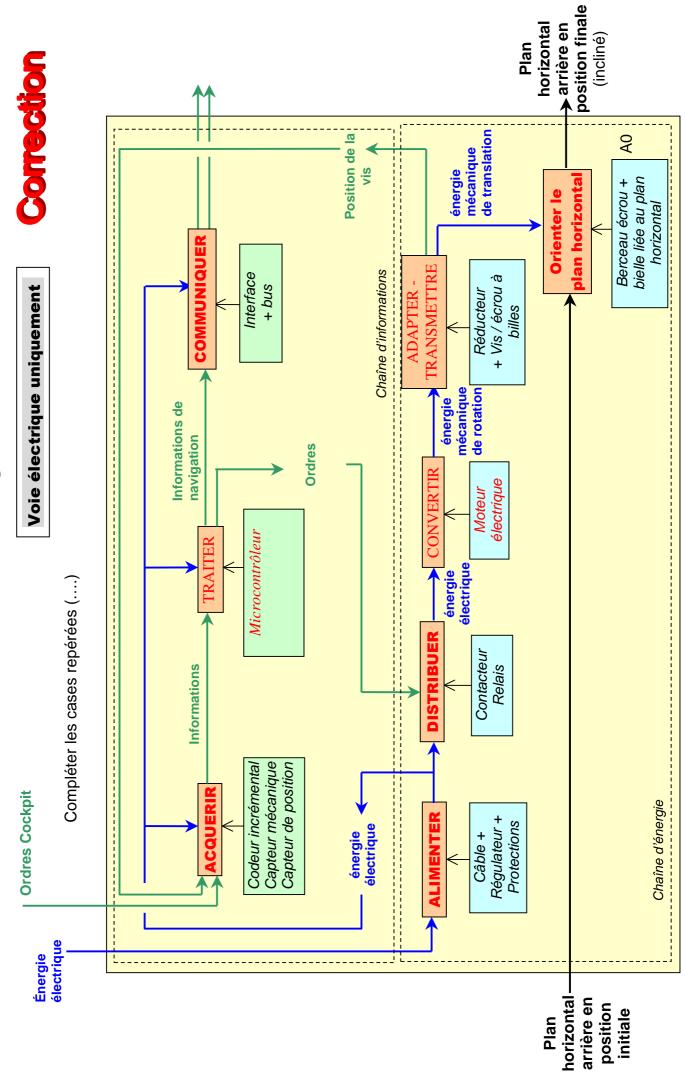
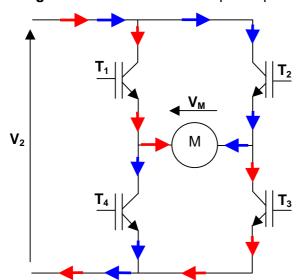
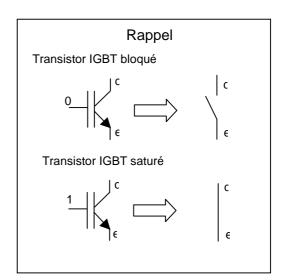
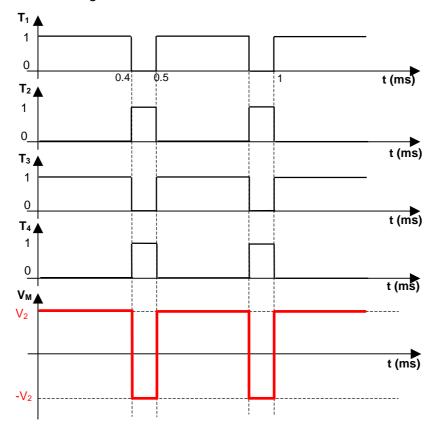




Figure n°14

	min	nominale	max
V _a (v)	88	115	130
V ₂ (v)	205.9	269	304.2


Figure n°15: schéma électrique du pont en H

	Etat de T₁	Etat de T ₂	Etat de T ₃	Etat de T₄
Sens 1	saturé	bloqué	saturé	bloqué
Sens 2	bloqué	saturé	bloqué	saturé

Figure n°16: Chronogrammes de commande des transistors IGBT

Baccalauréat Scientifique Série S Session 2009

Actionneur de commande du plan horizontal arrière de l'Airbus A380

BAREME TOTAL /80

Partie I 16 points

Question n⁹-A: 2 points

Question n⁹-B: 2 points

Question n^{\alpha}-C: 1 point

Question n^o1-D: 2 points

Question n^{\mathbb{A}}-E: 3 points

Question n^o1-F: 2 points

Question n^{\mathfrak{9}}-G: 1 point

Question n⁹-H: 1 point

Question n⁹-I: 2 points

Partie II 21 points

Question n^o-A: 2 points

Question n^o-B: 2 points

Question n^o-C: 1.5 points

Question n^o2-D: 1.5 points

Question n^o-E: 2 points

Question n^o-F: 2 points

Question n^o2-G: 2 points

1 point (figure 14 DR4)

Question n²-H: 2 points

Voir DR4

Question n²-l: 2 points

Voir DR4

Question n^o2-J: 3 points

Partie III 30 Points

Question n³-A: 2 points

Question n³-B: 2 points

Question n³-C: 3 points

Question n³-D: 2 points

Question n³-E: 5 points

Question n³-F: 3 points

Question n³-G: 1 point

Question n³-H: 3 points

Question n³-I: 3 points

Question n³-J: 6 points

Partie IV 13 points

Question n°4-A: 4 points

Question n°4-B: 1 point

Question n°4-C: 8 points