
Barème de notation (total: 80 points)

A 1	Fast 5x 0.5 =	2.5		/ 2.5 pts
B 1.1	Résolution du CAN =	2		
	4 valeurs à calculer =	2		
B1.2	Tableau + Tracé =	5		
B1.3	Valeurs max de tension =	2		/ 12 pts
B1.4	Compatibilité tension de commande =	1		F
B2.1	nécessité vérifier la distance parcourue	1		
B2.2	causes erreurs positionnement =	1		
B2.3	Nombre d'impulsions =	2		/ 7 pts
B2.4	Valeur de Kd =	2		· - *
B2.5	Valeurs min max pour 1 défaut =	1		
B2.6	Valeurs de ND si usure roue =	2		
C1.1	Relation Vtrac = $f(\Omega_R)$ et Ω_R	=	2	
C1.2	Calcul de Cr en sortie réducteur	=	2	
C1.3	Calcul couple nominal moteur	=	2	
C1.4	Calcul couple moteur nominal	=	2	
C1.5	vérif Cn > Cm	=	1	/ 7 4
C1.6	Calcul Ωm	=	2	/ 7 pts
C1.7	vérification vitesse	=	1	
C1.8	Validation du choix moteur	=	1	
C2.1	Composantes actions de contact	=	3	
C2.2	Equations	=	4	/ 7 pts
C2.3	Valeur de tanφ	=	2	, , pu s
C2.4	Validation valeur de tanφ	=	1	
D1	Période de découpage et justif choix fréq	<u> </u>	2	
D2	Valeur moy tension et vitesse moteur	=	2,5	
D3	Transistors passants	=	1	/ 7 pts
D4	Um et $Im = f(t)$ chariot à l'arrêt	=	2	• •
D5	Calcul de Id moteur	=	2	
D6	Comparaison Imoteur / I variateur	=	1	
E1	Schéma cinématique 5x0.5	=	2.5	
E2	Sens de déplacement 3x0.5	=	1.5	/ 7 pts
E3	Détermination graphique rayon braquage		2	, , hm
E4	Conformité	=	1	
E5	Solution technologique	=	1	
F1.1	Tableau comparatif	=	3	
F1.2	Calcul résolution codeur	=	3	/ 7 pts
F1.3	Rôle signal Z + position origine	=	2	· - *
F2.1	Choix solution Z1	=	1	
F2.2	Choix solution Z2	=	1	/ 7 pts
F2.3	Esquisse profil Z3	=	2	· -
F2.4	Perspective support codeur	=	3	

9SIOSAG1 Corrigé Page 1/9

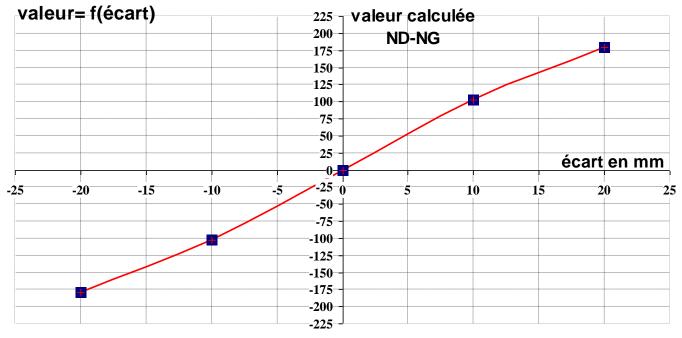
Réponse A-1-1 (feuille réponse DR1)

Réponses B-1.1 Calcul de la résolution du CAN

CAN 10 bits PE=10v

résolution = $PE / 2^n$

 $10/2^{10} = 10/1024 = 9.766 \text{ mV}$


Calculs de NG et ND

ex : NG = Ug / résolution = $2.5 / 9.766 \cdot 10^{-3} = 256$

Réponses B-1.1 Tableau à compléter : (feuille réponse DR2)

Ecart (mm)	Ug (v)	Ud (v)	NG	ND	ND-NG
-20	2.5	0.75	256	77	-179
-10	2	1	205	102	-103
0	1.25	1.25	128	128	0
+10	1	2	102	205	+103
+20	0.75	2.5	77	256	+179

Caractéristique de la valeur calculée en fonction de l'écart de trajectoire. (feuille réponse DR2)

Réponses B-1.3 Valeurs maximums suivant les écarts de trajectoire :

DR₂

$$NV = 1.5 \times 179 = 268.5$$

Ucv =
$$R_{cna}$$
.NV = 20 x 268.5 / 2^{10} = 5,24V

Les valeurs maximums de la tension de commande seront -5,24V et +5,24V

Réponses B-1.4 Compatibilité avec la plage de commande du variateur et rôle du coefficient K2

Les valeurs de tension sont compatibles (comprises dans la plage -10 +10v) et le coefficient K2 permet d'ajuster la sensibilité de la correction de trajectoire.

Réponses B2-1- à B2-6

- **B-2-1** Il est nécessaire de connaître précisément la position du chariot et le codeur seul est insuffisant
- **B-2-2** usure de la roue, perte d'adhérence, trajectoire peu précise dans les virages
- **B-2-3** nombre d'impulsions entre 2 plots espacés de 10m

Périmètre de la roue P = pi*D et D = 210mmP = 660 mm

Donc sur 10m => 15,157 tours de roue => 363.78 tours moteur avec le réducteur 1/24 1tour moteur \rightarrow 1024 points => Ni= 372 513 impulsions pour 10 m

B-2-4 valeur **Kd** pour diviser le nombre d'impulsions afin d'obtenir la distance en mm et stocker le résultat dans un mot de 16 bits signé noté Nd

Nd = Ni / Kd donc Kd = Ni / Nd avec Nd = 10000 => Kd = 37,25.

B-2-5 Valeurs mini et maxi de **Nd** entre lesquelles un défaut non sera considéré comme non identifié. détecté, dans le sens AV et le sens AR.

 $= 10\ 000$ mm = Ndavec 2,5% d'erreur soit 250 mm de tolérance Sens Av 9750 à 10 250 Sens AR -9750 à -10 250

B-2-6 Usure de 2 mm sur le rayon de la roue donc $Ni = 379746 \Rightarrow Nd = 10194 < \grave{a} 10250$ donc défaut identifié

Réponses C-1-1 à C-1-10 Validation du couple moteur (sur copie et feuille réponse DR2)

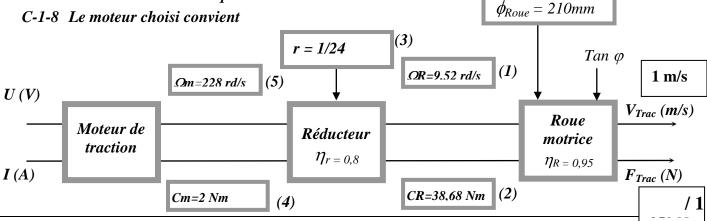
```
C-1-1 V_{trac} = \Omega_R * \phi_{Roue} / 2.
```

$$\Omega_R = V_{trac}/\phi_{Roue}/2 = 1/0,21/2 = 9,524 \ rd/s$$

C-1-2 -T +
$$M * \delta = 0$$
 T = 700 * 0,5 T = 350 N (schéma : idem C-2-1)

$$C_R = (T * \phi_{Roue}/2)/\eta_R = C_R = (350 * 0.105)/0.95 = 38.68 \text{ Nm.}$$
:

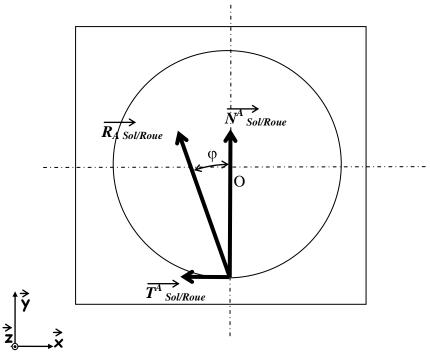
C-1-3 De la même manière, $C_m = (C_R * r)/\eta_r$ On obtient : $C_m = (36,68 * 1/24)/0,8 = 2,014 \text{ Nm}$

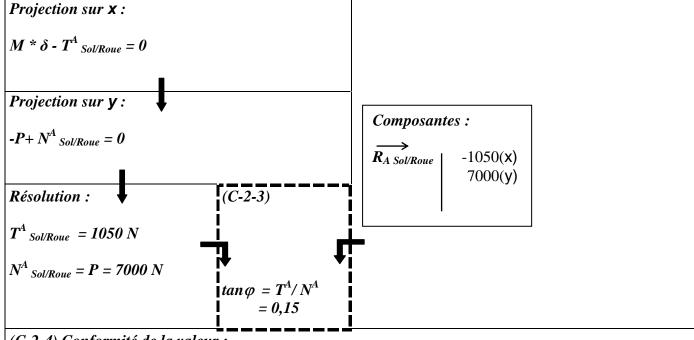

C-1-4
$$C_N = P_N / \Omega_N = 700 / (2590*2*\pi/60) = 2,58 \text{ Nm}$$

C-1-5 La valeur de C_m est inférieure à celle de C_N , donc le moteur convient de ce point de vue.

C-1-6
$$\Omega_m = \Omega_R / r$$
. Donc: $\Omega_m = V_{trac} / \phi_{Roue} / 2 / r = 1 / 0.21 / 2*24 = 228.57 rd/s, soit $N_m = 2182.7 tr/min$.$

C-1-7 Le document DT4 indique 2590 tr/mm de vitesse nominale


C-1-8 Le moteur choisi convient


9SIOSAG1 Corrigé Page 3/9

DR3

Réponse C-2-1

Réponses C-2-2 à C-2-3

(C-2-4) Conformité de la valeur :

la valeurs de 0,5 (sol mouillé) et la valeur de 1 (sol sec) conviennent.

DR4

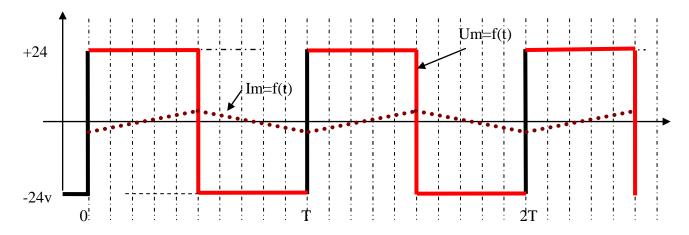
La fréquence de découpage est de 21kHz T = 1/21000= 47,6 µs

Cette valeur de fréquence est choisie pour éviter les nuisances sonores (supérieure à la fréquence audible) elle est assez élevée pour limiter l'ondulation du courant dans le moteur mais ne doit pas être trop élevée pour limiter les pertes par commutation dans les transistors

Réponses D-2 Valeur moyenne de la tension (oscillogramme page 8/27) ainsi que la vitesse du moteur:

La tension est modulée entre +24 V et -24 V avec une période T

Um moyen = (1/T) x (24 x t1 - 24 x (T-t1) avec T = 10 carreaux et t1 = 9.5 carreaux


Um moyen = $24 \times (2 \times 1/T - 1) = Vm \text{ moyen} = 21,6 \text{ V}$

Pour 24 V n=2590 tr/min donc pour 21,6 V n=2331 tr/min

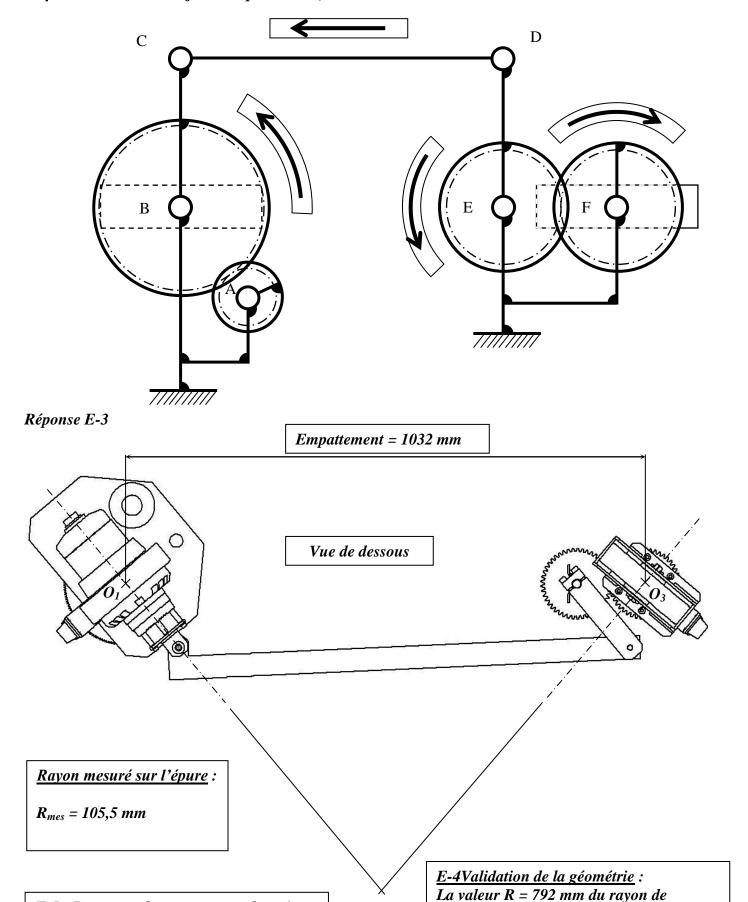
Réponses D-3 Transitors passants

Um > 0 T1 et T4 passants Um < 0 T2 et T3 passants

Réponses D-4 Justification et représentation de Um=f(t) et de Im=f(t) si le chariotest à l'arrêt (feuille réponse DR3)

A l'arrêt la tension moyenne aux bornes du moteur est nulle (ainsi que le courant) le rapport cyclique est de 0,5

Réponses D-5 Courant absorbé lors de la phase d'accélération


Cm= KФI

Cm = 2 et $K\Phi = 0.083$ Nm/A = > I = 24.09 A

Réponses D-6 Compatible avec les caractéristiques du variateur utilisé

Le variateur supporte un courant de 45 A pendant 3s et un courant permanent de 20A le courant lors de l'accélération est de 24 A pendant 2s. Cela est compatible.

Réponses E-1 et E-2 (feuille réponse DR4)

braquage extrême permet donc des virages

d'une courbure supérieure à celle exigée.

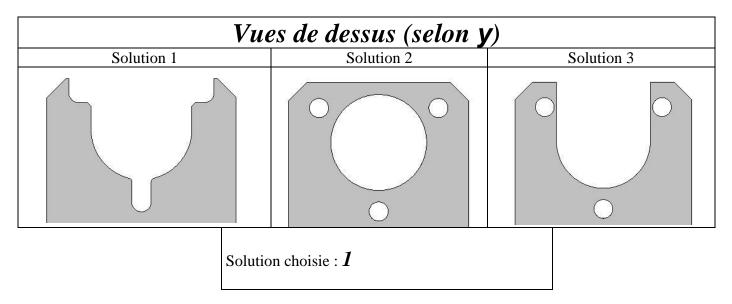
La géométrie est donc validée.

E-5 : Permettre de tourner avec de petits

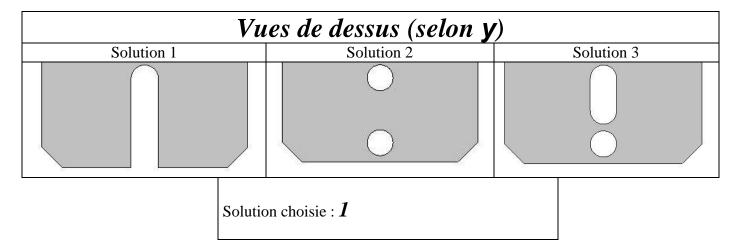
rayons de courbure des virages

Réponses F 1.1 Etude comparative (Pour la mesure de la position de la tourelle de direction)

	Avantage	Inconvénient		
Potentiomètre	Simple, peu coûteux	Usure rapide, changement à prévoir en fonction de l'usure		
Codeur incrémental	Pas d'usure, fiable et peu coûteux	Nécessite une prise d'origine (initialisation de compteur) en cas de perte d'alimentation		

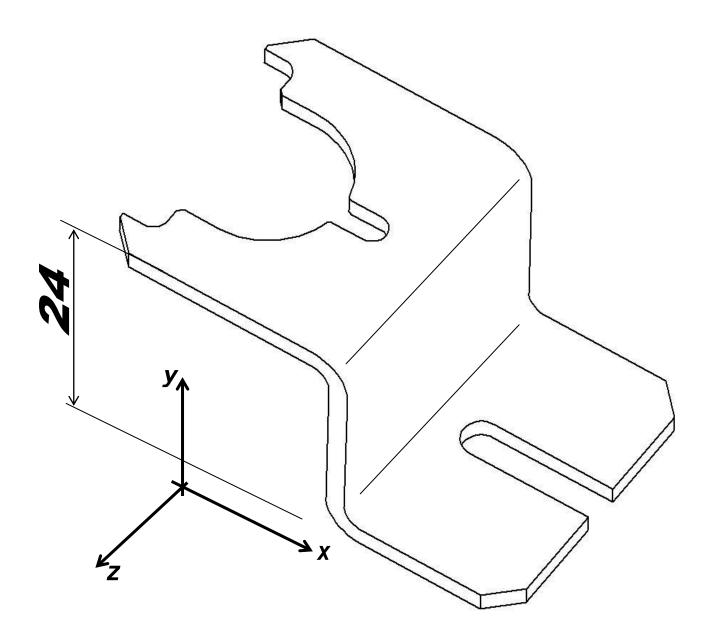

Réponses F 1.2 Etude Calcul de la résolution du codeur incrémental notée « Rc » pour obtenir une précision de 0,5° sur l'angle de rotation de la tourelle.

Le rapport de réduction entre le codeur et la tourelle est de $160/17=9,41~(r=\omega_c/\omega_t)$ 360° avec $0,5^\circ$ de précision => 360/0,5=720 pas sur la roue de la tourelle résolution codeur = 720/9,41=76,5 pas sur le codeur


Réponses F 1.3 le codeur choisi est G320.0 60 41 41, un modèle 100 pas par tour.

Avec 100 pas, la résolution sur la tourelle sera de 9,41*100=941 pas ce qui représente une résolution angulaire de 0,38°


Réponses F-2-1 : Choix Zone Z1 (feuille réponse DR5)


Réponses F-2-2 : Choix Zone Z2

Réponses F-2-3 : Définition Zone Z3

Réponses F-2-4 : Définition du support codeur (feuille réponse DR6)

