Correction Bac ES – Centres étrangers – juin 2010

EXERCICE 1 (5 points)

Commun à tous les candidats

- 1) Le nombre réel $e^{\frac{3x}{2}}$ est égale à : $e^{\frac{3x}{2}}$ ($e^{\frac{3x}{2}}$) En effet, $e^{\frac{3x}{2}} = (e^{\frac{x}{2}})^3 = (\sqrt{e^x})^3$. Remarque : $e^{\frac{3x}{2}} = e^{\frac{3x-2}{2}}$ et l'expression $e^{\frac{3x}{2}} - e^2$ ne se simplifie pas.
- 2) L'équation $\ln(x^2 + x + 1) = 0$ admet sur \mathbb{R} : c) Deux solutions En effet, pour tout $x \in \mathbb{R}$, $x^2 + x + 1 > 0$ (le discriminant de ce trinôme est négatif) Et, pour tout $x \in \mathbb{R}$, $\ln(x^2 + x + 1) = 0 \Leftrightarrow x^2 + x + 1 = 1 \Leftrightarrow x(x + 1) = 0$ $\Leftrightarrow x = 0$ ou x = -1.
- 3) L'équation $e^x = e^{-x}$ admet sur \mathbb{R} : **b**) Une seule solution En effet, $e^x = e^{-x} \Leftrightarrow \ln(e^x) = \ln(e^{-x}) \Leftrightarrow x = -x \Leftrightarrow x = 0$.
- 4) On considère une fonction f définie sur l'intervalle $[1; +\infty[$ vérifiant la propriété suivante : Pour tout $x \in [1; +\infty[$, $\frac{1}{x} \le f(x) \le 1$.

On peut alors affirmer que : a) $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$

En effet, pour tout $x \in [1; +\infty[, \frac{1}{x} \le f(x) \le 1 \Leftrightarrow \frac{1}{x^2} \le \frac{f(x)}{x} \le \frac{1}{x}]$

Comme, $\lim_{x \to +\infty} \frac{1}{x^2} = 0$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$ d'après le théorème des gendarmes, $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.

5) On considère deux fonctions f et g définies sur un intervalle I, telles que g est une primitive de la fonction f sur I. On suppose que la fonction g est croissante sur I. Alors on peut affirmer que : b) La fonction f est positive sur I.

En effet, comme g est une primitive de f, on a : g'(x) = f(x).

De plus, g est croissante sur I et donc sa dérivée est positive sur I.

EXERCICE 2 (5 points)

Candidats n'ayant pas suivi l'enseignement de spécialité

Partie A: Etude statistique

1)
$$\frac{271,7 + 321,4 + 443 + 540,1 + 613,1 + 683,5 + 773,4 + 872,6}{8} = 564,85$$

Donc, la dette moyenne de l'État entre 1990 et 2004 est de 564,9 milliards d'euros.

2) On a le tableau suivant :

Année	1990	1992	1994	1996	1998	2000	2002	2004
Rang de l'année x_i	0	1	2	3	4	5	6	7
Dette y_i en milliards d'euros	271,7	321,4	443	540,1	613,1	683,5	773,4	872,6
Indice	100	118,3	163	198,8	225,7	251,6	284,7	321,2

- 3) On a : 321,2 100 = 221,2 Donc, le taux global d'évolution de la dette de l'État entre 1990 et 2004 est de 221,2 %.
- **4)** Le coefficient multiplicateur global est égal à 3,212. Notons *x* le coefficient multiplicateur correspondant au taux moyen d'évolution de la dette sur une période de 2 ans.

Alors, on a : $x^7 = 3,212$ et donc, $x = \sqrt[7]{3,212} = 1,181$ à 10^{-3} près. Donc, le taux moyen d'évolution de la dette de l'État sur une période de 2 ans est de 18,1 %.

Partie B: Interpolation et extrapolation de données.

- 1) Une équation de la droite d'ajustement affine de y en x obtenue par la méthode des moindres carrés est : y = 86,4 x + 262,3 (coefficients arrondis à 10^{-1} près)
- 2) On cherche x tel que : $86.4 x + 262.3 > 1000 \Leftrightarrow x > \frac{1000 262.3}{86.4}$ et $\frac{1000 262.3}{86.4} \approx 8.54$ C'est donc à partir de l'année de rang 9, c'est-à-dire 2008, que la dette dépassera 1000 milliards d'euros.
- 3) On cherche x tel que : $86.4 x + 262.3 > 2 \times 683.5$ $\Leftrightarrow 86.4 x > 1367 - 262.3$ $\Leftrightarrow x > \frac{1104.7}{86.4}$

Comme $\frac{1104,7}{86,4} \approx 12,79$ c'est à partir de l'année de rang 13, c'est-à-dire 2016, que la dette de l'État sera le double de la dette de l'an 2000.

EXERCICE 2 (5 points)

Candidats ayant suivi l'enseignement de spécialité

- En 2010 (2010 + 0), la forêt possède 50 milliers d'arbres et donc, u₀ = 50.
 L'année (2010 + n), la forêt possède u_n milliers d'arbres. On en abat 5 % et donc, il en restera 0,95 u_n, auxquels on ajoutera 3 milliers de nouveaux arbres.
 Donc, l'année (2010 + n + 1) il y aura 0,95 u_n + 3 milliers d'arbres.
 D'où, u_{n+1} = 0,95 u_n + 3.
- 2) On considère la suite (v_n) définie pour tout entier naturel n par $v_n = 60 u_n$.

a) Pour tout entier naturel
$$n$$
, $v_{n+1} = 60 - u_{n+1} = 60 - 0.95 \ u_n - 3 = 57 - 0.95 \ u_n$.
 $v_{n+1} = 0.95 \ (\frac{57}{0.95} - u_n) = 0.95(60 - u_n)$

Ainsi, $v_{n+1} = 0.95 v_n$. Donc, la suite (v_n) est une suite géométrique de raison 0.95.

- **b**) On a : $v_0 = 60 u_0 = 60 50 = 10$. Comme la suite (v_n) est géométrique de raison 0,95 on a : $v_n = v_0 \times 0,95^n = 10 \times 0,95^n$.
- c) Comme $v_n = 60 u_n$ on a : $u_n = 60 v_n = 60 10 \times 0.95^n$.
- 3) 2015 = 2010 + 5 et $u_5 = 60 10 \times 0.95^5 = 52,262$ à 10^{-3} près. Donc, en 2015, la forêt possèdera 52 262 d'arbres.
- **4) a)** $u_{n+1} u_n = 60 10 \times 0.95^{n+1} 60 + 10 \times 0.95^n = 10 \times 0.95^n (-0.95 + 1) = 0.5 \times 0.95^n$.
 - **b)** Comme pour tout entier naturel n, $u_{n+1} u_n = 0.5 \times 0.95^n$ et $0.5 \times 0.95^n > 0$ (produit de nombre positif), on a : $u_{n+1} u_n > 0$ pour tout entier naturel n. Ainsi, la suite (u_n) est strictement croissante.
- 5) On cherche n tel que : $u_n > 1,1 \times u_0 \Leftrightarrow u_n > 55 \Leftrightarrow 60 10 \times 0,95^n > 55$ $\Leftrightarrow 10 \times 0,95^n < 5 \Leftrightarrow 0,95^n < 0,5$ $\Leftrightarrow \ln(0,95^n) < \ln(0,5) \Leftrightarrow n \ln(0,95) < \ln(0,5)$ $\Leftrightarrow n > \frac{\ln(0,5)}{\ln(0,95)} \text{ car } \ln(0,95) < 0.$

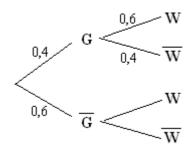
Comme $\frac{\ln(0,5)}{\ln(0,95)} \approx 13,51$ c'est à partir de l'année 2024 (2010 + 14) que le nombre d'arbres de la forêt aura dépassé de 10 % le nombre d'arbres de la forêt en 2010.

6) On a : $u_n = 60 - 10 \times 0.95^n$. Comme $0.95 \in]-1$; $1[, \lim_{n \to +\infty} (0.95)^n = 0$ et donc, $\lim_{n \to +\infty} u_n = 60$. Ainsi, à long terme, la forêt possèdera environ 60 milliers d'arbres.

EXERCICE 3 (5 points)

Commun à tous les candidats

- 1) Sur l'ensemble des téléphones portables, 40 % possèdent l'option GPS, donc : p(G) = 0.4Parmi les téléphones avec l'option GPS, 60 % ont l'option Wifi donc : $p_G(W) = 0.6$.
- 2) On a l'arbre suivant :



- 3) $p(G \cap W) = p(G) \times p_G(W) = 0.4 \times 0.6 = 0.24$ Donc, la probabilité de l'événement « le téléphone possède les deux options » est égale à 0.24.
- 4) On a : $p_{\overline{G}}(W) = \frac{p(\overline{G} \cap W)}{p(\overline{G})}$

Or, comme G et \overline{G} forment une partition de l'univers, d'après la formule des probabilités totales, on a : $p(W) = p(G \cap W) + p(\overline{G} \cap W)$

Donc,
$$p(\overline{G} \cap W) = p(W) - p(G \cap W) = 0.7 - 0.24 = 0.46$$

Par suite, $p_{\overline{G}}(W) = \frac{0.46}{0.6} = \frac{23}{30}$.

 $\begin{array}{c|c}
0,6 & W \\
\hline
0,4 & \overline{W} \\
\hline
0,6 & \overline{G} & \overline{W}
\end{array}$

On obtient l'arbre complété ci-contre :

5)
$$p_W(\overline{G}) = \frac{p(\overline{G} \cap W)}{p(W)} = \frac{0.46}{0.7} = \frac{23}{35}$$

Donc, sachant que le téléphone possède l'option Wifi, la probabilité qu'il ne possède pas l'option GPS est égale à $\frac{23}{35}$

6) Le coût de revient peut être :

r de 18 € et sa probabilité est : $p(G \cap W) = 0,24$.

r de 12 € et sa probabilité est : $p(G \cap \overline{W}) = 0.4 \times 0.4 = 0.16$.

r de 6 € et sa probabilité est : $p(\overline{G} \cap W) = 0,46$.

r de 0 € et sa probabilité est : $p(\overline{G} \cap \overline{W}) = 0.6 \times \frac{7}{30} = 0.14$.

Ainsi, la loi de probabilité du coût de revient de ces deux options est :

10000011100 0000 00000 00	0 10 1101		0.00	P *** *** *
Coût de revient	0	6	12	18
Probabilité	0,14	0,46	0,16	0,24

7) $E = 0 \times 0.14 + 6 \times 0.46 + 12 \times 0.16 + 18 \times 0.24 = 9$.

Ainsi, le coût de revient moyen d'un téléphone est de 9 €.

EXERCICE 4 (5 points)

Commun à tous les candidats

On considère la fonction f définie sur]0; $+\infty[$ par $f(x) = 1 + \ln(x)$.

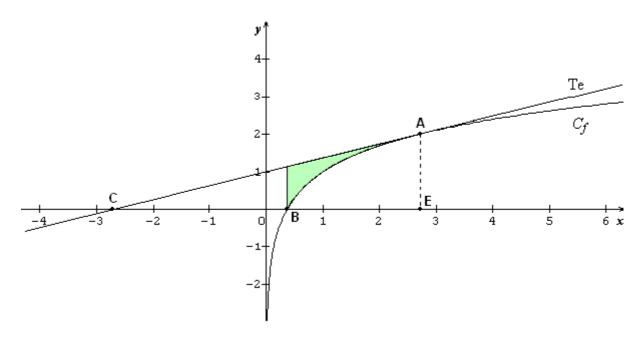
On note \mathscr{C}_f la courbe représentative de f dans un repère du plan.

Le point A (e; 2) appartient à \mathscr{C}_f et on note T_e la tangente à \mathscr{C}_f au point A.

Le point C est le point d'intersection de la tangente T_e et de l'axe des abscisses.

Le point E a pour coordonnées (e; 0).

On admettra que sur]0 ; $+\infty$ [, \mathscr{C}_{r} reste en dessous de T_{e} .



1) a) Le point B est le point d'intersection de \mathscr{C}_f et de l'axe des abscisses, donc l'abscisse du point B est solution de l'équation f(x) = 0.

Or,
$$f(x) = 0 \Leftrightarrow 1 + \ln(x) = 0 \Leftrightarrow \ln(x) = -1 \Leftrightarrow x = e^{-1} = \frac{1}{e}$$

Donc, le point B a pour coordonnées (e⁻¹; 0).

b)
$$x \ge \frac{1}{e} \Leftrightarrow \ln(x) \ge \ln(e^{-1}) \Leftrightarrow \ln(x) \ge -1 \Leftrightarrow 1 + \ln(x) \ge 0$$

Donc, pour $x \ge \frac{1}{e}$ on a bien : $f(x) \ge 0$.

2) a) La tangente T_e a pour équation : $y = f'(e) \times (x - e) + f(e)$.

Or,
$$f(e) = 1 + \ln(e) = 2$$
 et $f'(x) = \frac{1}{x}$ et donc, $f'(e) = \frac{1}{e}$

Donc, une équation de T_e est : $y = \frac{1}{e}(x - e) + 2$ soit, $y = \frac{1}{e}x + 1$.

b) Le point C est l'intersection de la droite T_e avec l'axe des abscisses.

Ainsi, l'abscisse de C est telle que :
$$\frac{1}{e}x_C + 1 = 0 \Leftrightarrow x_C = -e$$
.

Donc, le point C a pour coordonnées (-e; 0).

c) On a : C (-e; 0) et E (e; 0).

Le milieu du segment [CE] a pour coordonnées $\left(\frac{x_C + x_E}{2}; \frac{y_C + y_E}{2}\right) = (0; 0)$

Donc, les points E et C sont bien symétriques par rapport à O.

On considère la fonction g définie sur]0; $+\infty[$ par $g(x) = x \ln x.$

3) **a**)
$$g(x) = u(x) \times v(x)$$
 avec $u(x) = x$ et $v(x) = \ln x$

Donc,
$$g'(x) = u'(x)v(x) + u(x)v'(x)$$
 avec $u'(x) = 1$ et $v'(x) = \frac{1}{x}$

D'où,
$$g'(x) = 1 \times \ln x + x \times \frac{1}{x} = 1 + \ln x = f(x)$$
.

Donc, la fonction g est bien une primitive de la fonction f sur $]0; +\infty[$.

b)
$$\int_{\frac{1}{e}}^{e} (1 + \ln x) \, dx = g(e) - g(\frac{1}{e}) = e \ln(e) - \frac{1}{e} \ln(\frac{1}{e}) \, d'où, \int_{\frac{1}{e}}^{e} (1 + \ln x) \, dx = e + \frac{1}{e}$$

Ainsi, l'aire de la partie du plan comprise entre \mathscr{C}_f , l'axe des abscisses et les droites d'équation $x = \frac{1}{e}$ et x = e vaut $e + \frac{1}{e}$ unités d'aire.

4) L'aire de la partie du plan comprise entre la droite T_e , l'axe des abscisses et les droites d'équation $x = \frac{1}{e}$ et x = e est égale à : $\int_{1}^{e} (\frac{1}{e}x + 1) dx$ unités d'aire.

La fonction $h(x) = \frac{1}{e}x + 1$ a pour primitive $H(x) = \frac{1}{2e}x^2 + x$.

Ainsi,
$$\int_{\frac{1}{e}}^{e} (\frac{1}{e}x + 1) dx = H(e) - H(\frac{1}{e}) = \frac{e}{2} + e - \frac{1}{2e^3} - \frac{1}{e} = \frac{3}{2}e - \frac{1}{2e^3} - \frac{1}{e}$$

Par suite, l'aire grisée vaut : $\int_{\frac{1}{e}}^{e} (\frac{1}{e}x + 1) dx - \int_{\frac{1}{e}}^{e} (1 + \ln x) dx = \frac{3}{2} e - \frac{1}{2e^{3}} - \frac{1}{e} - e - \frac{1}{e}$

D'où, l'aire grisée vaut $\frac{1}{2}e - \frac{1}{2e^3} - \frac{2}{e} \approx 0,598$ unité d'aire.