BACCALAURÉAT GÉNÉRAL

SESSION 2011

PHYSIQUE-CHIMIE

Série S

DURÉE de L'ÉPREUVE : $\mathbf{3} \mathbf{h} \mathbf{3 0}$ - COEFFICIENT : 6

L'usage d'une calculatrice EST autorisé Ce sujet ne necessite pas de feville de papier millimétré

Qe sujet comporte un exarcice de CHIMIE et deux exercices de PHYSIQUE présertés sur 10 pages numérotées de 1 à 10, y compris celle-ci.

La page d’annexe (page 10) EST À RENDRE AVEC LA COPIE, même si elle n'a pas été complétée.

Le candidat doit traiter les trois exercices qui sont indépendants les uns des autres.

EXERCICE 1 : SYNTHESE DU SALICYLATE DE METHYLE (6,5 points)

Le Securidaca Longepedunculata est un arbre de 7 à 10 mètres de haut avec une cime claire. Son écorce est épaisse, jaune clair, lisse avec des petites écailles foncées. Ses racines sont très épaisses et odorantes. Ses feuilles sont vert foncé. Ses fleurs sont papilionacées, également très odorantes, de couleur rose à pourpre.
La plante est répandue en Afrique, dans les savanes et les galeries forestières. Elle est constituée, à plus de 90%, de salicylate de méthyle.
L 'huile essentielle extraite de ses racines fraîches et séchées à l'ombre pendant 5 jours contient un seul constituant, le salicylate de méthle. Les propriétés médicinales de cet arbre sont bien connues, surtout contre les morsures de serpent ; au Mali, les préparations en sont nombreuses pour divers remédes.

Ne disposant pas d'écorce de cet arbre, on se propose de réaliser la synthèse du salicylate de méthyle à partir de l'acide salicylique présent naturellement dans l'écorce du saule : c'est un ester dont la synthèse a été réalisée pour la première fois en 1886.

Données :

	Acide salicylique	Méthanol	Salicylate de méthyle	Cyclohexane	Glucose
Formule brute	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$	X	X	$\mathrm{C}_{6} \mathrm{H}_{72}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\mu\left(\mathrm{~g} \cdot \mathrm{~mL}^{-1}\right)$	1,44	0.80	1,17	0,79	X
$\mathrm{T}_{\mathrm{as}}\left({ }^{\circ} \mathrm{C}\right)$	159	-98	$-8,6$	6,5	146
$\mathrm{~T}_{\mathrm{ab}}\left({ }^{\circ} \mathrm{C}\right)$	211	65	223	81	X
Solubilité dans Teau	Faible	Trés bonne	Trés faible	Nulle	Excellente
Solubilité dans le cyclohexane	Trés bonne	Bonne	Bonne		Très faible
M (g.mol ${ }^{-1}$)	$\mathrm{M}_{1}=138$	$\mathrm{M}_{2}=32$	$\mathrm{M}_{3}=152$		

Partie 1: Extraction de l'acide salicylique

Cette extraction se fait par hydrodistillation. On réduit en poudre 435 g d'écorce de saule que f'on place dans un ballon. On ajoute 1 L d'eau distillée et on introduit le ballon dans un montage d'hydrodistillation.
Apres 30 minutes, on recueille le distillat dans lequel l'espece chimique presente est la salicine.
En faisant bouillir le distillat faiblement acidifié, on provoque son hydrolyse; la salicine se décompose en glucose et en acide salicylique.
A lissue de cette opération, on réalise l'extraction de l'acide salicylique par le cyclohexane.
Après isolement de la phase organique de l'ampoule à décanter et évaporation du cyclohexane dans un dispositif adapté, on recueille une masse $m_{1}=8,7 \mathrm{~g}$ d'acide salicylique.
1.1 Identifier, sur la figure 1 ci-dessous le montage d'hydrodistillation. Justifier.

Figure 1

1.2 Compléter le schéma de l'ampoule à décanter, figure 2 en Annexe page 10, à rendre avec la copie en y distinguant les phases aqueuse et organique. Justifier la composition de chaque phase à l'aide des données physicochimiques.

Partie 2 : Etude de la synthèse du salicylate de méthyle

2.1 Donner la formule semi-développée du méthanol. Nommer le groupe caractéristique qu'il contient ainsi que la famille à laquelle il appartient.
2.2 Recopier sur la copie la formule de l'acide salicylique donnée ci-contre ; identifier puis nommer les groupes caractéristiques présents dans cette molécule.
2.3 Ecrire l'équation de la réaction de synthèse du salicylate de méthyle. Justifier l'état physique des réactifs et des produits.
2.4 Donner deux propriétés des transformations associées à ce type de réaction chimique.

On introduit $m_{1}=8,7 \mathrm{~g}$ d'acide salicylique dans un ballion, dans lequel on verse un volume $V=10,0 \mathrm{~mL}$ de méthanol, quelques gouttes d'acide sulfurique et quelques grains de pierre ponce. Après plusieurs heures de chauffage à reflux, on refroidit le mélange réactionnel à température ambiante.
On ajoute environ 100 mL d'eau dans le mélange et on verse dans une ampoule à décanter. On extrait la phase organique avec du cyclohexane: cette phase a une masse volumique proche de celle du cyclohexane et contient l'ester et des traces d'acide.

On lave ensuite plusieurs fois cette phase avec une solution aqueuse d'hydrogénocarbonate de sodium afin d'éliminer les acides restant dans la solution. Il se produit un dégagement gazeux.
On effectue à nouveau un lavage à l'eau. On sépare les constituants de la phase organique par distillation.

Après purification, on récupère une masse $m_{3}=6,1 \mathrm{~g}$ de salicylate de méthyle.
2.5 Expliquer le principe et les avantages du chauffage à reflux.
2.6 Expliquer le rôle de l'acide sulfurique et de la pierre ponce.
2.7 Ecrire l'équation de la réaction entre les ions hydrogénocarbonate $\mathrm{HCO}_{3}{ }^{\text {(aq) }}$) et les acides restants que l'on notera simplement AH. Expliquer alors le rôle des ions hydrogénocarbonate $\mathrm{HCO}_{3}{ }^{\circ}(\mathrm{aq})$ 仡 le dégagement gazeux observé.

Couples mis en jeu: ($\left.\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2(\mathrm{aq})} \mathrm{HCO}_{3}{ }^{{ }_{(a q)}}\right)$, $\left(\mathrm{AH}_{(\mathrm{aqq})} / \mathrm{A}_{(\mathrm{aq})}{ }^{\circ}\right)$.

Partie 3 : Rendement de la synthèse du salicylate de méthyle

3.1 Déterminer la quantité de matière n_{1} d'acide salicylique introduite dans le ballon.
3.2 Déterminer la quantité de matière n_{2} de méthanol introduite dans le milieu réactionnel.
3.3 En s'aidant éventuellement d'un tableau d'avancement, déterminer les quantités de matière des réactifs et des produits à lissue de la synthèse si l'on considère que la transformation est totale.
3.4 Déterminer la quantité de matière n_{3} d'ester formée expérimentalement, puis le rendement expérimental de la réaction dans ces conditions.

Partie 1: Vecteur champ de pesanteur lunaire

1.1 L'expérience.

On a fété, en 2009, le quarantième: anniversaire du premier alunissage. Le 21 juillet 1969. Neil Armstrong fut le premier homme à poser le pied sur la Lune. Lors de l'une des cinq expéditions lunaires suivantes, l'astronaute d'Apollo 15 Dave Scott réalisa une expérience de physique : il prit dans ses mains levées à hauteur des épaules, un marteau dans l'une et une plume dans l'autre. Puis il les lacha en méme temps. Contrairement à ce qui se serait passé sur Terre, la plume ne se mit pas à voleter doucement mais tomba exactement comme le marreau Sans résistance de l'air pour freiner la plume, les detox objets s'enfoncèrent dans la poussière lunaire exactement au même instant.

Dans l'exercice, lindice M sera attribué au marteau et P à la plume.
1.1.1 Faire le bilan des forces qui s'exercent sur la plume (de masse m_{p}) et sur le marteau (de masse m_{M}) à linstant où ils sont lâchés.
1.1.2 Donner l'expression de ces forces en fonction du vecteur champ de pesanteur lunaire $\xrightarrow[g l_{L}]{1.1 .2}$
1.1.3 En appliquant la deuxième loi de Newton, montrer que ces deux objets ont le même vecteur accélération que l'on précisera.
1.2 Enregistrement de la chute du marteau.

On peut, à partir du document vidéo de la NASA, construire des graphiques relatifs au mouvement du centre d'inertie G du marteau.

A linstant du lâcher, pris comme origine des temps, G est à $h=1,50 \mathrm{~m}$ du sol. Le mouvement est étudié dans le référentiel lunaire, muni du repère $(\mathrm{O}, \vec{i}, \vec{j})$, faxe Ox correspond au sol.

1.2.1 Des graphiques $\mathbf{1}$ et $\mathbf{2}$ ci-aprés, lequel correspond à la trajectoire de G ?

1.2.2 Queiles sont les coordonnées du vecteur accélération \vec{a}_{M} de G dans le repère $(0, \vec{i}, \vec{j})$ ci-dessus?
1.2.3 Quelles sont les coordonnées du vecteur vitesse \vec{v}_{M} de G ?
1.2.4 En déduire l'expression en fonction du temps de la norme, notée v_{m}, du vecteur vitesse \vec{v}_{M} de G. En quoi le graphique $n^{\circ} 3$ ci-dessous est-il compatible avec cette expression?

Graphique 3
1.2.5 A partir de ce même graphique, déterminer la valeur du champ de pesanteur lunaire g_{L}.

Partie 2: Durée de la chute.

2.1 Etablir l'équation horaire du mouvement $y(t)$.
2.2 En déduire la durée de la chute du centre d'inertie G du marteau. La réponse sera vérifiée à partir d'un des graphiques ci-dessus.
2.3 Serait-on arrivé à la méme réponse si on avait raisonné à partir de la plume ? Pourquoi? Dans la description de l'expérience, relever la phrase qui confirme la réponse.

Partie 3 : Marchons sur la lune

Dans tous les documents filmés sur la Lune, on voit les astronautes se déplacer de façon bondissante. Hergé l'avait bien anticipé dans les aventures de Tintin «On a marché sur la Lune».

Pendant la marche, on peut considérer que lors de l'impulsion du pied sur le sol, le centre de gravité G du corps (situé un peu au-dessous du nombril) est projeté vers le haut et retombe à son niveau de départ quand l'autre pied prend contact avec le sol, un pas ayant été alors accompli ; le mouvement de G peutêtre assimilé, pour simplifier, au mouvement du centre de gravité d'un objet lancé vers le haut, avec la vitesse initiale v. G décrit ainsi une trajectoire correspondant au graphique 4 "trajectoire de G lors d'un pas » ci-dessous :

Graphique 4

On se propose de calculer la longueur du bond correspondant à un pas.
\vec{v} est le vecteur vitesse correspondant à la vitesse initiale de valeur $v=2,0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. II fait avec l'horizontale l'angle $\alpha=60^{\circ}$.

L'étude théorique du mouvement de G conduit aux équations horaires:
$X=(v \cdot \cos \alpha) \cdot t \quad$ et $\quad Y=-\frac{1}{2} \cdot g_{L} \cdot t^{2}+(v \cdot \sin \alpha) \cdot t \ldots$.
(O'X étant l'axe horizontal du repère choisi et correspondant au sol, O'Y l'axe vertical de ce même repère et la date $t=0$ étant prise au début du pas).
3.1 A partir des équations horaires ci-dessus, démontrer, en établissant la fonction $Y(X)$, que la trajectoire de G est une portion de parabole.
3.2 Quelle sont les valeurs de Y au début et la fin du pas dans le repère choisi ? On pourra s'aider du graphique 4 .
3.3 En déduire l'expression littérale de la distance horizontale parcourue par G, correspondant à la longueur d'un pas.
3.4 Faire le calcul numérique, sachant que la valeur du champ de pesanteur lunaire est de $1,62 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. Le résultat est-il compatible avec ce qui peut être déduit du graphique 4 ?

EXERCICE 3 : DIFFRACTION DE LA LUMIERE A TRAVERS UN TAMIS (4 points)

La production de certains catalyseurs nécessite de déposer un métal noble (Pd, Pt, Au) sur un support inerte comme la silice $\left(\mathrm{SiO}_{2}\right)$. La silice commerciale se présente sous forme de petits grains blancs de tailles différentes : il est nécessaire de trier ces grains à l'aide de tamis pour fabriquer des catalyseurs tous identiques.
Le but de cet exercice est de vérifier la taille des mailles d'un tamis en effectuant une expérience de diffraction par un faisceau LASER.

Partie 1 : Généralités sur les ondes

1.1 Définir la notion d'onde.

1.2 On différencie deux types d'ondes selon la direction de la propagation et celle de la perturbation. Nommer chaque type et donner un exemple pour chacun.

Partie 2 : Lumière LASER

Un faisceau LASER monochromatique de longueur d'onde dans le vide $\lambda_{0}=532 \mathrm{~nm}$ et se propageant dans l'air, est dirigé vers un tamis de laboratoire (sorte de grille) à maille carrée de côté a. On observe sur un écran une figure de diffraction identique à celle représentée cidessous. La tache centrale est un carré de côté $L=2,66 \mathrm{~cm}$.

2.1 Quel caractère de la lumière l'apparition d'une figure de diffraction met-elle en évidence ?
2.2 Dans quelle condition ce phénomène est-il observable?
2.3 Une onde lumineuse est caractérisée par une périodicité spatiale et une périodicité temporelle. Nommer ces périodicités et préciser leur unité.
2.4Rappeler la relation qui lie la longueur d'onde dans le vide λ_{0}, la célérité de la lumière c dans le vidẹ et la période T_{0}. Exprimer puis calculer la valeur de la fréquence v_{0} correspondante.
2.5 Calculer l'énergie associée à un photon LASER de fréquence v_{0}.
2.6 On considèrera par la suite que les longueurs d'onde dans l'air et dans le vide sont identiques. Quelle propriété de l'air, vis-à-vis de la lumière, permet de faire cette approximation ? Citer un milieu qui n'a pas cette propriété.

Partie 3 : Dimension des mailles du tamis

Le LASER est placé à une distance $\mathrm{d}=40 \mathrm{~cm}$ du tamis ; la distance entre le tamis et l'écran vaut $D=2,0 \mathrm{~m}$.

Un tamis à maille carrée possède des propriétés diffractantes identiques à celles observées lors de la superposition de deux fentes allongées de même largeur et disposées perpendiculairement l'une par rapport à l'autre.
3.1 Montrer, en s'aidant du schéma, que l'écart angulaire θ noté sur le schéma peut s'écrire $\theta=\mathrm{L} / 2 \mathrm{D}$. On se placera dans l'approximation des petits angles : $\tan \theta=\theta$ (rad).
3.2 Rappeler la relation qui lie l'écart angulaire θ à la longueur d'onde λ et au côté a de la maille.
3.3Exprimer puis calculer la dimension a d'une maille du tamis en utilisant les données expérimentales données ci dessus.

Données : Constante de Planck: $\mathrm{h}=6,63 \cdot 10^{-34} \mathrm{J.S}$;
Célérité de la lumière dans le vide : $\mathrm{c}=3 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}$

ANNEXE A RENDRE AVEC LA COPIE

EXERCICE 1 : SYNTHESE DU SALICYLATE DE METHYLE

Figure 2

