BACCALAURÉAT GÉNÉRAL Session 2015

MATHÉMATIQUES - Série ES -

ENSEIGNEMENT OBLIGATOIRE

Durée de l'épreuve : 3 heures - Coefficient : 5

MATHÉMATIQUES - Série L -

ENSEIGNEMENT DE SPECIALITE

Durée de l'épreuve : 3 heures - Coefficient : 4

Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation en vigueur.

Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices. Dans chaque exercice, le candidat peut admettre un résultat précédemment donné dans le texte pour aborder les questions suivantes, à condition de l'indiquer clairement sur la copie. Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.

Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Avant de composer, le candidat s'assurera que le sujet comporte bien 5 pages numérotées de 1 à 5.

EXERCICE 1 (4 points)

Commun à tous les candidats

Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des questions posées, une seule des quatre réponses est exacte. Recopier le numéro de la question et la réponse exacte. Aucune justification n'est demandée. Une réponse exacte rapporte 1 point, une réponse fausse ou l'absence de réponse ne rapporte ni n'enlève aucun point.

Partie A

Un industriel veut lancer sur le marché une gamme de produits spécialement concus pour les gauchers. Auparavant il cherche à estimer la proportion de gauchers dans la population française. Une première étude portant sur un échantillon de 4 000 Français révèle que l'on dénombre 484 gauchers.

1) Un intervalle de confiance au niveau de confiance 0,95 permettant de connaître la proportion de gauchers dans la population française est (les bornes ont été arrondies à 10^{-3}):

a. [0,120; 0,122] **b.** [0,863; 0,895]

c. [0,105; 0,137]

d. [0,090 ; 0,152]

2) La taille n de l'échantillon que l'on doit choisir afin d'obtenir un intervalle de confiance au niveau de confiance 0,95 ayant une amplitude de 0,01 est :

a. n = 15

b. n = 200

c. n = 10 000

d. n = 40~000

Partie B

Des chercheurs ont conçu un test pour évaluer la rapidité de lecture d'élèves de CE2. Ce test consiste à chronométrer la lecture d'une liste de 20 mots. On a fait passer ce test à un très grand nombre d'élèves de CE2. On appelle X la variable aléatoire qui donne le temps en seconde mis par un élève de CE2 pour passer le test. On admet que X suit la loi normale d'espérance $\mu = 32$ et d'écart-type $\sigma = 13$.

3) La probabilité $p(19 \le X \le 45)$ arrondie au centième est :

a. 0,50

b. 0.68

c. 0.84

d. 0.95

4) On note t la durée de lecture vérifiant $p(X \le t) = 0.9$. La valeur de t arrondie à l'entier est :

a. t = 32 s

b. t = 45 s

c. t = 49 s

d. t = 58 s

EXERCICE 2 (5 points)

Commun à tous les candidats

Les parties A et B sont indépendantes.

Dans un grand collège, 20,3 % des élèves sont inscrits à l'association sportive. Une enquête a montré que 17,8 % des élèves de ce collège sont fumeurs.

De plus, parmi les élèves non fumeurs, 22,5 % sont inscrits à l'association sportive.

On choisit au hasard un élève de ce collège. On note :

- S l'événement « l'élève choisi est inscrit à l'association sportive » ;
- F l'événement « l'élève choisi est fumeur ».

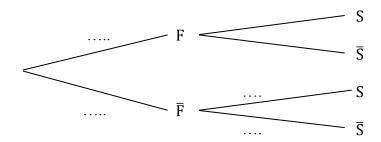
Rappel des notations :

Si A et B sont deux événements, p(A) désigne la probabilité de l'événement A et $p_B(A)$ désigne la probabilité de l'événement A sachant que l'événement B est réalisé. On note \overline{A} l'événement contraire de A.

Dans tout cet exercice, les résultats seront arrondis au millième.

Partie A

- 1) D'après les données de l'énoncé, préciser les valeurs des probabilités p(S) et $p_{\bar{F}}(S)$.
- 2) Recopier l'arbre ci-dessous et remplacer chacun des quatre pointillés par la probabilité correspondante.



- 3) Calculer la probabilité de l'événement $\bar{F} \cap S$ et interpréter ce résultat.
- 4) On choisit au hasard un élève parmi ceux inscrits à l'association sportive. Calculer la probabilité que cet élève soit non fumeur.
- **5**) On choisit au hasard un élève parmi les élèves fumeurs. Montrer que la probabilité que cet élève soit inscrit à l'association sportive est 0,101.

Partie B

Une loterie, à laquelle tous les élèves du collège participent, est organisée pour la journée anniversaire de la création du collège. Quatre lots sont offerts. On admet que le nombre d'élèves est suffisamment grand pour que cette situation soit assimilée à un tirage avec remise.

On rappelle que 20,3 % de l'ensemble des élèves sont inscrits à l'association sportive.

En justifiant la démarche, calculer la probabilité que parmi les quatre élèves gagnants, il y en ait au moins un qui soit inscrit à l'association sportive.

EXERCICE 3 (6 points)

Commun à tous les candidats

Dans une réserve naturelle, on étudie l'évolution de la population d'une race de singes en voie d'extinction à cause d'une maladie.

Partie A

Une étude sur cette population de singes a montré que leur nombre baisse de 15 % chaque année. Au 1^{er} janvier 2004, la population était estimée à 25 000 singes.

À l'aide d'une suite, on modélise la population au 1^{er} janvier de chaque année. Pour tout entier naturel n, le terme u_n de la suite représente le nombre de singes au 1^{er} janvier de l'année 2004 + n. On a ainsi $u_0 = 25\,000$.

- 1) Calculer l'effectif de cette population de singes :
 - a) au 1^{er} janvier 2005,
 - **b**) au 1^{er} janvier 2006, en arrondissant à l'entier.
- 2) Justifier que, pour tout entier naturel n, on a $u_n = 25\ 000 \times 0.85^n$.
- **3**) Suivant ce modèle, on souhaite savoir, à l'aide d'un algorithme, au bout de combien d'années après le 1^{er} janvier 2004 le nombre de singes sera inférieur à 5 000. Recopier et compléter les lignes L4, L5 et L6 de l'algorithme ci-dessous.

L1: Variables u un réel, n un entier L2: Initialisation u prend la valeur 25 000 L3: *n* prend la valeur 0 L4: Traitement Tant que faire L5: *u* prend la valeur L6: *n* prend la valeur L7: Fin Tant que L8 : Sortie Afficher n

4) Montrer que la valeur de *n* affichée après l'exécution de l'algorithme est 10.

Partie B

Au 1^{er} janvier 2014, une nouvelle étude a montré que la population de cette race de singes, dans la réserve naturelle, ne comptait plus que 5 000 individus. La maladie prenant de l'ampleur, on met en place un programme de soutien pour augmenter le nombre de naissances. À partir de cette date, on estime que, chaque année, un quart des singes disparaît et qu'il se produit 400 naissances.

On modélise la population de singes dans la réserve naturelle à l'aide d'une nouvelle suite. Pour tout entier naturel n, le terme v_n de la suite représente le nombre de singes au 1^{er} janvier de l'année 2014 + n. On a ainsi $v_0 = 5\,000$.

- 1) a) Calculer v_1 et v_2 .
 - **b)** Justifier que, pour tout entier naturel n, on a $v_{n+1} = 0.75 \times v_n + 400$.
- 2) On considère la suite (w_n) définie pour tout entier naturel n par $w_n = v_n 1$ 600.
 - a) Montrer que (w_n) est une suite géométrique de raison 0,75. Préciser la valeur de w_0 .
 - **b**) Pour tout entier naturel n, exprimer w_n en fonction de n.
 - c) En déduire que pour tout entier naturel n, on a $v_n = 1600 + 3400 \times 0.75^n$.
 - **d**) Calculer la limite de la suite (v_n) et interpréter ce résultat.

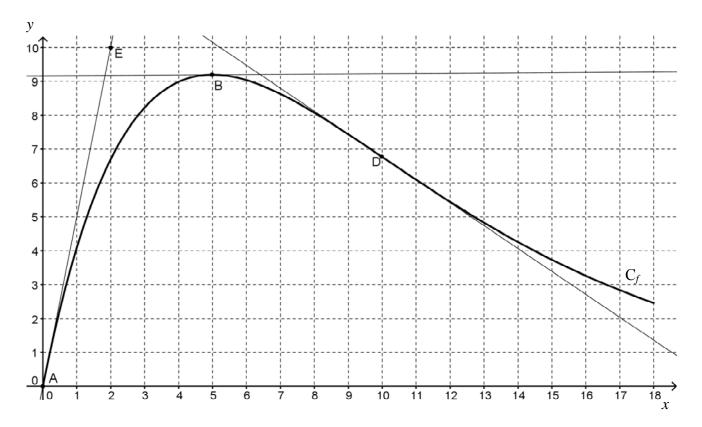
EXERCICE 4 (5 points)

Commun à tous les candidats

Partie A

Sur le graphique ci-dessous, on a tracé la courbe représentative C_f d'une fonction f définie et dérivable sur l'intervalle [0;18] ainsi que les tangentes au point A d'abscisse 0, au point B d'abscisse 5 et au point D d'abscisse 10.

On sait aussi que la tangente au point A passe par le point E de coordonnées (2 ; 10) et que la tangente au point B est parallèle à l'axe des abscisses.



- 1) Donner les valeurs de f'(5) et de f'(0).
- 2) On admet que D est un point d'inflexion. Donner une interprétation graphique de ce résultat.

Partie B

Une entreprise s'apprête à lancer sur le marché français un nouveau jouet destiné aux écoliers. Les ventes espérées ont été modélisées par la fonction f dont la courbe représentative C_f a été tracée cidessus.

En abscisses, x représente le nombre de jours écoulés depuis le début de la campagne publicitaire. En ordonnées, f(x) représente le nombre de milliers de jouets vendus le x-ième jour.

Ainsi, par exemple, le 10-ème jour après le début de la campagne publicitaire, l'entreprise prévoit de vendre environ 6 800 jouets.

On admet que la fonction f est définie sur l'intervalle [0 ; 18] par $f(x) = 5 x e^{-0.2x}$.

- 1) Montrer que $f'(x) = (5 x) e^{-0.2 x}$ où f' désigne la fonction dérivée de f sur l'intervalle [0; 18].
- 2) Étudier le signe de f'(x) sur [0; 18] puis dresser le tableau de variations de f sur [0; 18].
- 3) Déterminer le nombre de jours au bout duquel le maximum de ventes par jour est atteint. Préciser la valeur de ce maximum, arrondie à l'unité.

Partie C

- 1) On admet que la fonction F définie sur [0; 18] par $F(x) = (-25x 125) e^{-0.2x}$ est une primitive de la fonction f.
 - a) Calculer la valeur exacte de l'intégrale $\int_0^{10} f(x) dx$.
 - **b**) En déduire une estimation du nombre moyen de jouets vendus par jour durant la période des 10 premiers jours. On arrondira le résultat à l'unité.
- 2) Un logiciel de calcul formel nous donne les résultats suivants :

1	$Deriver[(5-x)*\exp(-0.2*x)]$
	$-\exp(-0.2 * x) - \frac{1}{5} * \exp(-0.2 * x) * (-x + 5)$
2	Factoriser[$-\exp(-0.2 * x) - \frac{1}{5} * \exp(-0.2 * x) * (-x + 5)$]
	$\frac{x-10}{5} * \exp\left(-0.2 * x\right)$

Utiliser ces résultats pour déterminer, en justifiant, l'intervalle sur lequel la fonction f est convexe.