BACCALAUREAT GENERAL

MATHEMATIQUES

Série S

Enseignement Spécifique

Durée de l'épreuve : 4 heures

Coefficient: 7

Ce sujet comporte 9 pages numérotées de 1 à 9

Du papier millimétré est mis à la disposition des candidats.

L'utilisation d'une calculatrice est autorisée.

Le candidat doit traiter tous les exercices.

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (6 points)

(commun à tous les candidats)

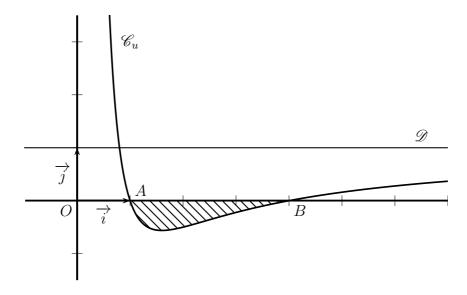
Partie A

Dans le plan muni d'un repère orthonormé $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$, on désigne par \mathscr{C}_u la courbe représentative de la fonction u définie sur l'intervalle $]0, +\infty[$ par :

$$u(x) = a + \frac{b}{x} + \frac{c}{x^2}$$

où a, b et c sont des réels fixés.

On a tracé sur le graphique ci-dessous la courbe \mathscr{C}_u et la droite \mathscr{D} d'équation y=1.



On précise que la courbe \mathscr{C}_u passe par les points A(1,0) et B(4,0) et que l'axe des ordonnées et la droite \mathscr{D} sont asymptotes à la courbe \mathscr{C}_u .

- 1) Donner les valeurs de u(1) et u(4).
- 2) Donner $\lim_{x\to +\infty} u(x)$. En déduire la valeur de a.
- 3) En déduire que, pour tout réel x strictement positif, $u(x) = \frac{x^2 5x + 4}{x^2}$.

Partie B

Soit f la fonction définie sur l'intervalle $]0, +\infty[$ par :

$$f(x) = x - 5\ln x - \frac{4}{x}.$$

- 1) Déterminer la limite de f(x) lorsque x tend vers 0. On pourra utiliser sans démonstration le fait que $\lim_{x\to 0} x \ln x = 0$.
- 2) Déterminer la limite de f(x) lorsque x tend vers $+\infty$.
- 3) Démontrer que, pour tout réel x strictement positif, f'(x) = u(x). En déduire le tableau de variation de la fonction f en précisant les limites et les valeurs particulières.

Partie C

- 1) Déterminer l'aire \mathscr{A} , exprimée en unité d'aire, du domaine hachuré sur le graphique de la **partie A**.
- 2) Pour tout réel λ supérieur ou égal à 4, on note \mathscr{A}_{λ} l'aire, exprimée en unité d'aire, du domaine formé par les points M de coordonnées (x,y) telles que

$$4 \leqslant x \leqslant \lambda$$
 et $0 \leqslant y \leqslant u(x)$.

Existe-t-il une valeur de λ pour laquelle $\mathcal{A}_{\lambda} = \mathcal{A}$?

Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

EXERCICE 2 (4 points)

(commun à tous les candidats)

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse et justifier la réponse.

Il est attribué un point par réponse exacte correctement justifiée. L'absence de réponse n'est pas pénalisée. Une réponse non justifiée n'est pas prise en compte.

L'espace est muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Les points A, B, C sont définis par leurs coordonnées:

$$A(3,-1,4), B(-1,2,-3), C(4,-1,2).$$

Le plan \mathscr{P} a pour équation cartésienne : 2x - 3y + 2z - 7 =

La droite Δ a pour représentation paramétrique $\begin{cases} x=-1+4t\\y=4-t\\z=-8+2t \end{cases}, t\in\mathbb{R}.$

Affirmation 1 : Les droites Δ et (AC) sont orthogonales.

Affirmation 2 : Les points A, B et C déterminent un plan et ce plan a pour équation cartésienne 2x + 5y + z - 5 = 0.

Affirmation 3 : Tous les points dont les coordonnées (x; y; z) sont données par

Affirmation 3 : Tous les points dont les coordonnées
$$(x \; ; \; y \; ; \; z)$$
 $\begin{cases} x = 1 + s - 2s' \\ y = 1 - 2s + s' \\ z = 1 - 4s + 2s' \end{cases}$, $s \in \mathbb{R}$, $s' \in \mathbb{R}$, appartiennent au plan \mathscr{P} .

Affirmation 4 : Il existe un plan parallèle au plan $\mathscr P$ qui contient la droite Δ .

EXERCICE 3 (5 points)

(commun à tous les candidats)

Les trois parties A, B et C peuvent être traitées de façon indépendante.

Partie A

Le chikungunya est une maladie virale transmise d'un être humain à l'autre par les piqûres de moustiques femelles infectées.

Un test a été mis au point pour le dépistage de ce virus. Le laboratoire fabriquant ce test fournit les caractéristiques suivantes :

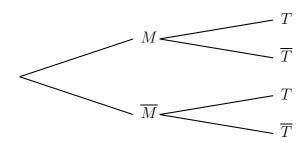
- la probabilité qu'une personne atteinte par le virus ait un test positif est de 0, 98;
- la probabilité qu'une personne non atteinte par le virus ait un test positif est de 0,01.

On procède à un test de dépistage systématique dans une population « cible ». Un individu est choisi au hasard dans cette population. On appelle :

- M l'événement : « L'individu choisi est atteint du chikungunya »
- T l'événement : « Le test de l'individu choisi est positif »

On notera \overline{M} (respectivement \overline{T}) l'événement contraire de l'événement M (respectivement T). On note p ($0 \le p \le 1$) la proportion de personnes atteintes par la maladie dans la population cible.

1) a) Recopier et compléter l'arbre de probabilité ci-dessous.



- **b)** Exprimer $P(M \cap T)$, $P(\overline{M} \cap T)$ puis P(T) en fonction de p.
- 2) a) Démontrer que la probabilité de M sachant T est donnée par la fonction f définie sur [0,1] par :

$$f(p) = \frac{98p}{97p+1}.$$

b) Etudier les variations de la fonction f.

population le test est-il fiable?

3) On considère que le test est fiable lorsque la probabilité qu'une personne ayant un test positif soit réellement atteinte du chikungunya est supérieure à 0,95. En utilisant les résultats de la question 2., à partir de quelle proportion p de malades dans la

Partie B

En juillet 2014, l'institut de veille sanitaire d'une île, en s'appuyant sur les données remontées par les médecins, publie que 15 % de la population est atteinte par le virus.

Comme certaines personnes ne consultent pas forcément leur médecin, on pense que la proportion est en réalité plus importante.

Pour s'en assurer, on se propose d'étudier un échantillon de 1 000 personnes choisies au hasard dans cette île. La population est suffisamment importante pour considérer qu'un tel échantillon résulte de tirages avec remise.

On désigne par X la variable aléatoire qui, à tout échantillon de $1\,000$ personnes choisies au hasard, fait correspondre le nombre de personnes atteintes par le virus et par F la variable aléatoire donnant la fréquence associée.

- 1) a) Sous l'hypothèse p = 0, 15, déterminer la loi de X.
 - **b**) Dans un échantillon de 1 000 personnes choisies au hasard dans l'île, on dénombre 197 personnes atteintes par le virus.

Quelle conclusion peut-on tirer de cette observation à propos du chiffre de 15 % publié par l'institut de veille sanitaire ?

Justifier. (On pourra s'aider du calcul d'un intervalle de fluctuation au seuil de 95 %.)

2) On considère désormais que la valeur de p est inconnue. En utilisant l'échantillon de la question **1. b.**, proposer un intervalle de confiance de la valeur de p, au niveau de confiance de 95 %.

Partie C

Le temps d'incubation, exprimé en heures, du virus peut être modélisé par une variable aléatoire T suivant une loi normale d'écart type $\sigma=10$.

On souhaite déterminer sa moyenne μ .

La représentation graphique de la fonction densité de probabilité de T est donnée en annexe.

- 1) a) Conjecturer, à l'aide du graphique, une valeur approchée de μ .
 - **b**) On donne p(T < 110) = 0, 18. Hachurer sur le graphique un domaine dont l'aire correspond à la probabilité donnée.
- 2) On note T' la variable aléatoire égale à $\frac{T-\mu}{10}$.
 - a) Quelle loi la variable aléatoire T' suit-elle?
 - b) Déterminer une valeur approchée à l'unité près de la moyenne μ de la variable aléatoire T et vérifier la conjecture de la question 1.

EXERCICE 4 (5 points)

(candidats n'ayant pas suivi l'enseignement de spécialité)

Dans un pays de population constante égale à 120 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent être modélisés de la façon suivante :

- en 2010, la population compte 90 millions de ruraux et 30 millions de citadins ;
- chaque année, 10 % des ruraux émigrent à la ville ;
- chaque année, 5 % des citadins émigrent en zone rurale.

Pour tout entier naturel n, on note :

- u_n la population en zone rurale, en l'année 2010 + n, exprimée en millions d'habitants ;
- v_n la population en ville, en l'année 2010 + n, exprimée en millions d'habitants.

On a donc $u_0 = 90$ et $v_0 = 30$.

Partie A

- 1) Traduire le fait que la population totale est constante par une relation liant u_n et v_n .
- 2) On utilise un tableur pour visualiser l'évolution des suites (u_n) et (v_n) . Quelles formules peut-on saisir dans les cellules B3 et C3 qui, recopiées vers le bas, permettant d'obtenir la feuille de calcul ci-dessous :

	A	В	С
1	n	Population en zone	Population en ville
		rurale	
2	0	90	30
3	1	82,5	37,5
4	2	76,125	43,875
5	3	70,706	49,294
6	4	66,100	53,900
7	5	62,185	57.815
8	6	58,857	61,143
9	7	56,029	63,971
10	8	53,625	66,375
11	9	51,581	68,419
12	10	49,844	70,156
13	11	48,367	71,633
14	12	47,112	72,888
15	13	46,045	73,955
16	14	45,138	74,862
17	15	44,368	75,632
18	16	43,713	76,287
19	17	43,156	76,844
20	18	42,682	77,318
21	19	42,280	77,720
22	20	41,938	78,062
			•••
59	57	40,005	79,995
60	58	40,004	79,996
61	59	40,003	79,997
62	60	40,003	79,997
63	61	40,002	79,998

3) Quelles conjectures peut-on faire concernant l'évolution à long terme de cette population?

Partie B

On admet dans cette partie que, pour tout entier naturel n, $u_{n+1} = 0.85u_n + 6$.

- 1) a) Démontrer par récurrence que la suite (u_n) est décroissante.
 - **b)** On admet que u_n est positif pour tout entier naturel n. Que peut-on en déduire quant à la suite (u_n) ?
- 2) On considère la suite (w_n) , définie par : $w_n = u_n 40$, pour tout $n \ge 0$.
 - a) Démontrer que (w_n) est une suite géométrique de raison 0,85.
 - **b**) En déduire l'expression de w_n puis de u_n en fonction de n.
 - c) Déterminer l'expression de v_n en fonction de n.
- 3) Valider ou invalider les conjectures effectuées à la question 3) de la partie A.
- 4) On considère l'algorithme suivant :

Entrée :	n et u sont des nombres	
Initialisation:	n prend la valeur 0 u prend la valeur 90	
Traitement:	Tant que $u\geqslant 120-u$ faire n prend la valeur $n+1u prend la valeur 0,85\times u+6Fin Tant que$	
Sortie:	Afficher n	

- a) Que fait cet algorithme?
- **b)** Quelle valeur affiche-t-il?

FEUILLE ANNEXE (à rendre avec la copie)

Annexe, Exercice 3

Courbe représentative de la fonction densité de la loi normale $\mathscr{N}\left(\mu,10^2\right)$

