Corrigé du bac 2016 : Mathématiques Obligatoire Série S – Métropole

BACCALAURÉAT GÉNÉRAL

Session 2016

MATHEMATIQUES Série S

ÉPREUVE DU LUNDI 20 JUIN 2016

Enseignement Obligatoire Coefficient: 7

Durée de l'épreuve : 4 heures

Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation en vigueur.

Correction proposée par un professeur de mathématiques pour le site www.sujetdebac.fr

EXERCICE 1

Partie A

Traduisons tout d'abord les données du texte. La chaîne A produit 40% des composants, donc la chaîne B en produit 60%. La probabilité de choisir un composant issu de la chaîne A se note P(A) et vaut 0,4 – celle de choisir un composant issu de la chaîne B se note P(B) et vaut 0,6.

En sortie de chaîne A, 20% des composants présentent ce défaut alors qu'en sortie de chaîne B, ils ne sont que 5%, ce qui se traduit en notations probabilistes : $P_A(S) = 1 - 0.20 = 0.80$ et $P_B(S) = 1 - 0.05 = 0.95$.

<u>Remarque</u>: Faire attention ici car S représente l'événement « le composant est **SANS** défaut ».

P_A(S) veut donc dire « la probabilité que le composant est sans défaut sachant qu'il provient de la chaîne A », or 20% représente la proportion de composants issus de la chaîne A **AVEC** un défaut.

1) En utilisant la formule des probabilités totales, on obtient :

$$P(S) = P(A) * P_A(S) + P(B) * P_B(S) = 0.4 * 0.8 + 0.6 * 0.95 = 0.89$$

2) Probabilité que le composant provienne de la chaîne A sachant qu'il ne possède pas de défaut : $P_s(A) = \frac{P(A \cap S)}{P(S)}$

Or
$$P(A) = P(A \cap S) + P(A \cap \overline{S})$$
 d'où on en déduit

$$P(A \cap S) = P(A) - P(A \cap \bar{S}) = P(A) - P_A(\bar{S}) * P(A) = P(A) * (1 - P_A(\bar{S})) = 0.4 * (1 - 0.2)$$

= 0.32

Donc
$$P_s(A) = \frac{P(A \cap S)}{P(S)} = \frac{0.32}{0.89} = 0.36$$

Partie B

- 1) En vérifiant les hypothèses du théorème de l'intervalle de confiance à 95%, à savoir :
 - $n \ge 30$; ici n = 400 donc OK
 - $nf \ge 5$; ici nf = 368 donc OK
 - $n(1-f) \ge 5$; ici n(1-f) = 32 donc OK

On peut appliquer la formule qui nous donne l'intervalle de confiance.

L'intervalle de confiance est défini tel que : $I=[f-\frac{1}{\sqrt{n}}\ ;\ f+\frac{1}{\sqrt{n}}]$ avec f la fréquence observée de composants sans défaut et n le nombre d'échantillons étudiés. On obtient alors :

$$I = [0.92 - \frac{1}{\sqrt{400}}; 0.92 + \frac{1}{\sqrt{400}}]$$
 c'est-à-dire $I = [0.87; 0.97]$.

2) L'amplitude étant la longueur de l'intervalle de confiance I calculé juste avant, si on veut trouver le nombre d'échantillons pour lequel cette amplitude soit inférieure ou égale à 0,02 on doit alors résoudre l'inégalité suivante : $\frac{2}{\sqrt{n}} \le 0,02$ ce qui nous donne $n \ge 10~000$.

Partie C

1.a) $P(T \le a)$ représente l'aire sous la courbe du graphique, c'est-à-dire entre les abscisses x=0 et x=a.

1.b) t étant positif, on peut se servir de la définition donnée à la question précédente et écrire :

$$P(T \le t) = \int_0^t \lambda e^{-\lambda x} dx = \left[-\frac{1}{\lambda} * \lambda e^{-\lambda x} \right]_0^t = -e^{-\lambda t} - (-1) = \mathbf{1} - e^{-\lambda t}$$

1.c) Calculons
$$\lim_{t \to +\infty} P(T \le t) = \lim_{t \to +\infty} \left(\mathbf{1} - e^{-\lambda t} \right)$$

Or
$$\lim_{t\to +\infty} -\lambda t = -\infty$$
 et $\lim_{X\to -\infty} (e^X) = 0$ donc $\lim_{t\to +\infty} (e^{-\lambda t}) = 0$

Ainsi,
$$\lim_{t \to +\infty} P(T \le t) = \lim_{t \to +\infty} (1 - e^{-\lambda t}) = 1 - 0 = 1$$

2) On suppose que $P(T \le 7) = 0.5$ donc $1 - e^{-7\lambda} = 0.5$ puis $e^{-7\lambda} = 0.5$

Enfin,
$$-7\lambda = \ln(0.5)$$
 et $\lambda = -\frac{\ln(0.5)}{7} \approx 0.099$

- **3.a)** T étant la variable aléatoire propre à la durée de vie du composant, on doit alors calculer $P(T \ge 5)$ pour avoir la probabilité que ce composant fonctionne au moins 5 ans. Avec λ =0,099, on a : $P(T \ge 5) = 1 P(T \le 5) = e^{-0.099 \times 5} = 0$, **61.**
- **3.b)** On nous demande, parmi les composants qui fonctionnent encore au bout de 2 ans, quelle est la probabilité que ce composant ait une durée de vie supérieure à 7 ans. On veut alors calculer $P_{T\geq 2}(T\geq 7)$.

Or, si X est une variable aléatoire suivant une loi exponentielle, alors pour tous réels positifs t et h : $P_{X \ge t}(X \ge t + h) = P(X \ge h)$. $P_{T \ge 2}(T \ge 7) = P_{T \ge 2}(T \ge 2 + 5) = P(T \ge 5)$

D'après la question 3.a), $P_{T>2}(T \ge 7) = 0,61$.

3.c) L'espérance mathématique E(T) qui suit une loi exponentielle de paramètre λ s'exprime telle que : $E(T) = \frac{1}{\lambda}$ d'où $E(T) = \frac{1}{0,099} \approx \mathbf{10}$.

Cela signifie que la durée moyenne de vie d'un composant est de 10 ans.

EXERCICE 2

Affirmation 1: Les trois points A, B et C sont alignés.

Calculons pour cela les vecteurs \overrightarrow{AB} et \overrightarrow{BC} par exemple. On a :

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 3-1=2\\ 0-2=-2\\ 1-3=-2 \end{pmatrix}$ et \overrightarrow{BC} $\begin{pmatrix} -1-3=-4\\ 0-0=0\\ 1-1=0 \end{pmatrix}$

Les deux vecteurs calculés ne sont pas colinéaires (aucune relation de proportionnalité ne peut être trouvée entre ces deux vecteurs) donc les trois points A, B et C ne sont pas alignés.

L'affirmation 1 est fausse.

Affirmation 2: Le vecteur $\vec{n} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ est un vecteur normal au plan (ABC)

Effectuons le produit scalaire du vecteur \vec{n} à deux vecteurs non colinéaires du plan (\overrightarrow{AB} et \overrightarrow{BC} par exemple) :

$$\overrightarrow{AB} \cdot \overrightarrow{n} = 2 * 0 + (-2) * 1 + (-2) * (-1) = -2 + 2 = 0$$

 $\overrightarrow{BC} \cdot \overrightarrow{n} = (-4) * 0 + 0 * 1 + 0 * (-1) = 0$

Les produits scalaires sont nuls : le vecteur \vec{n} est donc normal au plan (ABC).

L'affirmation 2 est vraie.

<u>Affirmation 3</u>: La droite (EF) et le plan (ABC) sont sécants et leur point d'intersection est le milieu M du segment [BC].

Le point M est situé en (1, 0, 1). Etant le milieu du segment [BC], il appartient forcément au plan (ABC).

Si la droite (EF) coupe le plan (ABC) en ce point, cela veut dire que les points E, F et M sont alignés. On le vérifie en étudiant la colinéarité des vecteurs \overrightarrow{EF} et \overrightarrow{EM} par exemple :

$$\overrightarrow{EF}\begin{pmatrix} -1\\-1\\1 \end{pmatrix}$$
 et $\overrightarrow{EM}\begin{pmatrix} 2\\2\\-2 \end{pmatrix}$

Les vecteurs sont colinéaires car $\overrightarrow{EF} = -\frac{1}{2}\overrightarrow{EM}$. Ainsi, M \in (ABC) et M \in (EF).

Donc l'affirmation 3 est vraie.

Affirmation 4 : Les droites (AB) et (CD) sont sécantes.

Ecrivons les équations paramétriques des droites (AB) et (CD) :

$$(AB):$$
 $\begin{cases} 1+2t \\ 2-2t \\ 3-2t \end{cases}$ et $(CD):$ $\begin{cases} 1-3u \\ u \\ 1-2u \end{cases}$

Si elles sont sécantes, nous devrions trouver un couple (t, u) caractéristique du point de rencontre des deux droites. On résout alors le système suivant :

$$\begin{cases} 1+2t = 1-3u \\ 2-2t = u \\ 3-2t = 1-2u \end{cases} \leftrightarrow \begin{cases} 2t = -3u \\ u = 2-2t (2) \\ 2-2t = 2u (3) \end{cases}$$

Les équations (2) et (3) sont contradictoires ; il n'existe pas de solution à ce système d'équation. L'affirmation 4 est donc fausse.

EXERCICE 3

Partie A

1) Soit
$$f(x) = x - \ln(x^2 + 1)$$

$$f(x) = x \leftrightarrow x - \ln(x^2 + 1) = x \leftrightarrow \ln(x^2 + 1) = 0 \leftrightarrow x^2 + 1 = e^0 = 1 \leftrightarrow x = 0.$$

2)

x	-∞		1		+∞
f'(x)		+	0	+	
f	-8				→ +∞

Calculons la derivée de la fontion f(x): $f'(x) = 1 - \frac{2x}{x^2 + 1} = \frac{x^2 + 2x + 1}{x^2 + 1} = \frac{(x - 1)^2}{x^2 + 1} \ge 0$ dans \mathbb{R} .

La dérivée f'(x) étant positive sur]- ∞ ; + ∞ [, la fonction f(x) est alors croissante sur \mathbb{R} .

De plus,
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [x - \ln(x^2 + 1)]$$

or
$$\lim_{x \to -\infty} (x^2 + 1) = +\infty$$
 et $\lim_{X \to +\infty} -\ln(X) = -\infty$ donc $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [x - \ln(x^2 + 1)] = -\infty$

3) Calculons *f*(0) et *f*(1):

$$f(0) = 0 - \ln(0+1) = \ln(1) = 0$$
 et $f(1) = 1 - \ln(1+1) = 1 - \ln(2) \approx 0.31$

La fonction f étant strictement croissante sur \mathbb{R} , ses valeurs sont comprises entre 0 et 1 sur l'intervalle [0, 1].

- **4.a)** L'algorithme étudié retourne le plus petit entier N respectant la condition $f(N) \ge A$.
- **4.b)** A l'aide de la calculatrice, on trouve $f(109) \approx 99,62 < 100$ et $f(110) \approx 100,60 > 100$. Dans ce cas, pour A = 100, **N = 110**.

Partie B

$$u_{n+1} = u_n - \ln(u_n^2 + 1)$$

1) Notons (P_n) : $u_n \in [0; 1]$ la propriété étudiée.

Initialisation : Pour n = 0, $u_0 = 1 \in [0; 1]$ donc P_0 est vraie.

<u>Hérédité</u>: Pour tout $n \in \mathbb{N}$, on suppose (P_n) vraie.

$$u_{n+1} = u_n - \ln(u_n^2 + 1) = f(u_n)$$

D'après la question 3) de la partie A, pour tout $x \in [0; 1]$, $f(x) \in [0; 1]$. Ainsi, par analogie avec les suites, $u_n \in [0; 1]$ implique que $f(u_n) \in [0; 1]$, donc $u_{n+1} \in [0; 1]$: (P_{n+1}) est vraie.

On a ainsi démontré la propriété au rang n + 1.

De ce fait, la propriété (P_n) est vraie quel que soit n.

2) Pour étudier les variations de la suite (u_n) , on étudie le signe de la différence $u_{n+1}-u_n$:

 $u_{n+1} - u_n = u_n - \ln(u_n^2 + 1) - u_n = -\ln(u_n^2 + 1)$ or $u_n^2 + 1 \ge 1$ puis en appliquant la fonction logarithme népérien ln à l'inégalité (fonction croissante sur \mathbb{R}):

$$ln(u_n^2 + 1) \ge 0$$
 d'où - $ln(u_n^2 + 1) \le 0$

Le résultat de la différence est négatif quel que soit n, donc la suite (un) est décroissante.

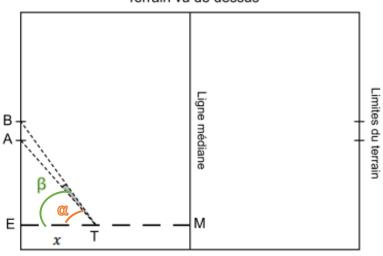
3) D'après la question 1), on sait que tous les termes de la suite (u_n) sont compris entre 0 et 1 ; la suite est donc minorée par 0. D'après la question 2) on sait que la suite est également décroissante.

La suite (u_n) converge alors vers une limite I.

4) En admettant que I vérifie l'égalité f(I) = I, on en déduit que I = 0 car nous avons vu dans la question 1) que la seule solution à l'égalité f(x) = x se trouvait en x = 0.

EXERCICE 4

Terrain vu de dessus



1) Exprimons tan α :

$$\tan \alpha = \frac{EA}{ET} = \frac{25}{x}$$

Puis tan β:

$$\tan \beta = \frac{EB}{ET} = \frac{25 + 5.6}{x} = \frac{30.6}{x}$$

2) Notons $f(x) = \tan(x) = \frac{\sin x}{\cos x}$ et étudions le signe de sa dérivée, ce qui est possible car f(x) est dérivable sur]0 ; $\pi/2$ [comme quotient de fonctions dérivables :

 $f'(x) = \frac{\sin^2 x + \cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} > 0$ sur]0; $\pi/2$ [. La dérivée de la fonction tangente étant strictement positive sur cet intervalle, la fonction tangente est donc strictement croissante sur]0; $\pi/2$ [.

3) Sur la figure, et d'après la relation de Chasles, on déduit que $\gamma = \beta - \alpha$.

Les angles α et β appartiennent bien à l'intervalle]0; $\pi/2[$, par conséquent leur différence aussi. On peut donc exprimer tan γ pour $x \in]0$; 50]:

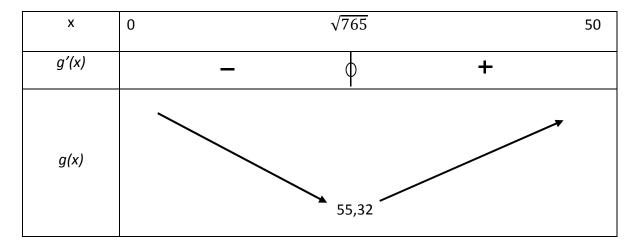
$$\tan \gamma = \tan(\beta - \alpha) = \frac{\tan \beta - \tan \alpha}{1 + \tan \alpha \tan \beta} = \frac{\frac{30.6}{x} - \frac{25}{x}}{1 + \frac{30.6}{x} * \frac{25}{x}} = \frac{\frac{5.6}{x}}{\frac{x^2 + 765}{x^2}} = \frac{5.6x}{x^2 + 765}$$

4) La fonction tangente étant strictement croissante sur l'intervalle d'étude]0 ; $\pi/2$ [, l'angle γ est maximal quand $\frac{5,6x}{x^2+765} = \frac{5,6}{x+\frac{765}{x}}$ l'est, donc lorsque $x+\frac{765}{x}$ est minimal.

Soit $g(x) = x + \frac{765}{x}$. Cette fonction est dérivable sur]0 ; 50] comme somme de fonctions dérivables sur cet intervalle.

On calcule sa dérivée : $(g(x))' = 1 - \frac{765}{x^2} = \frac{x^2 - 765}{x^2}$ on en déduit que son signe dépend de celui du numérateur, car le dénominateur est toujours positif.

En résolvant $x^2 - 765 = 0$ on trouve $x = \pm \sqrt{765}$. On peut maintenant poser le tableau pour l'étude du sens de variation de la fonction g(x):



Le minimum de la fonction g(x) correspond au maximum de tan γ (composition de la fonction inverse, strictement décroissante sur l'intervalle d'étude, avec g(x)).

Ainsi, $\tan \gamma$ est maximal pour $x = \sqrt{765}$. On mesure ensuite l'angle correspondant à cette mesure : $\tan \gamma = \frac{5,6*\sqrt{765}}{765+765}$ puis $\gamma = Arctan\left(\frac{5,6*\sqrt{765}}{765+765}\right) = Arctan\left(\frac{5,6*\sqrt{765}}{765+765}\right) \approx \mathbf{0}$, $\mathbf{10}$ \mathbf{rad}