SESSION 2016

BACCALAURÉAT TECHNOLOGIQUE

Sciences et Technologies de l'Industrie et du Développement Durable

ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX

Coefficient 8 – Durée 4 heures

Aucun document autorisé - Calculatrice autorisée

THÉÂTRE DU CENTRE CULTUREL DES QUINCONCES - LE MANS

PARTIE 1 : Impacts environnementaux de la construction du centre culturel

Question 1.1 Points qui caractérisent l'aspect social lors de la phase de construction :

Favoriser l'emploi et l'économie locale :

- Formation qualifiante de 20 personnes qui préparent au métier de « coffreursbancheurs » ;
- Faire participer des entreprises locales par le jeu de la sous-traitance.

Question 1.2 Phase de fabrication rejetant le plus de CO₂:

La phase de fabrication qui rejette le plus de CO₂ est la phase de décarbonatation qui rejette 60% de CO₂.

Pour la phase de cuisson, le fabricant va réduire de 30 % le combustible fossile pour le remplacer par des combustibles alternatifs qui rejettent moins de CO₂ lors de la combustion.

Pour la phase de décarbonatation, le fabricant va diminuer la quantité de calcaire cuit dans la constitution du ciment et le remplacer par des ajouts (laitiers, cendres...) qui dégagent moins de CO₂.

Question 1.3 Volume de béton utilisé pour la réalisation du centre culturel :

15 000 m3 au total, soit 2 800 m3 de béton (ciment CEM II/B-L 42,5 R) pour le radier et 12 200 m3 (ciment CEM II/B-L 42,5 R) pour les voiles et planchers.

Question 1.4

Voir tableau DR1.

Question 1.5 Différence de CO₂ en % par rapport au ciment standard (CEMI) :

```
981\ 000\ x\ 100\ /\ 3897000\ =\ 25,17\ \%;
```

Cette diminution de CO2 est supérieure aux 22 % minimum de l'engagement des fabricants de ciments. Le cahier des charges est donc respecté.

Question 1.6 Solutions complémentaires qui auraient pu être mise en place dans l'aspect environnemental de la construction du centre culturel :

- Utilisation de ciment bas carbone avec une émission de CO₂ plus faible (ciment CEM V/A ou CEMIII/ A ;
- Utilisation de produits de provenance locale pour la construction ;
- Utilisation de produit écologique (toit végétalisé pour isolation);
- Utilisation d'énergies renouvelables ;
- Valorisation des déchets ;
-

PARTIE 2 : Adaptation des infrastructures en fonction de la demande

2.1 Étude de l'éclairage scénique

Question 2.1.1 Projecteurs à 5 mètres de la scène projetant une lumière blanche :

```
Halogène PAR64 500W: Diamètre de la zone éclairée: 2,16m;
Surface éclairée = (π x D² / 4) = (π x 2,16² / 4) S = 3,66 m²;
Éclairement E= 947 lux pour une lumière blanche;
Flux lumineux F = E x S = 947 x 3,66 = 3466 lm;
Efficacité lumineuse: Fe = F / P = 3466 / 500 = 6,93 lm.W⁻¹;
```

```
LED PAR64 : Diamètre de la zone éclairée : 1,4 m;
Surface éclairée = (π x D² / 4) = (π x 1,4² / 4) S = 1,54 m²;
Éclairement E= 150 lux pour une lumière blanche;
Flux lumineux F = E x S = 150 x 1,54 = 231 lm;
Efficacité lumineuse : Fe = F / P = 231 / 21 = 11 lm.W⁻¹;
```

Voir tableau DR1.

Question 2.1.2 Choix de la solution la plus avantageuse et la mieux adaptée :

Le projecteur à LED dispose d'une meilleure efficacité énergétique que son homologue à technologie halogène du fait de sa faible consommation. Cette meilleure efficacité énergétique permettra une économie au niveau de la consommation tout au long de la vie du projecteur. De plus, la durée de vie du projecteur à LED est 20 fois plus importante que celle à lampe halogène. Du point de vue développement durable la solution la mieux adaptée est la solution utilisant des projecteurs LED PAR64.

Question 2.1.3

Voir chronogramme sur DR1.

Question 2.1.4 Intérêt d'utiliser une transmission symétrique :

Les perturbations extérieures sont supprimées du fait de la tension différentielle.

Question 2.1.5

Voir tableau DR2

Question 2.1.6

Voir tableau DR2

Question 2.1.7 Vitesse de transmission des données :

Durée d'un bit : 4 μ s \Rightarrow Vitesse de transmission : 1 / (4 x 10⁻⁶) = 250000 bit.s⁻¹. D'après DT4, la vitesse de transmission est de 250000 bit.s⁻¹ \Rightarrow conforme au protocole.

Question 2.1.8

Voir tableau DR2.

Question 2.1.9 Couleurs et intensités lumineuses produites par le projecteur :

Le canal 13 commande la couleur rouge ; valeur reçue : $51 \Rightarrow 51/255 = 20$ % rouge ; Le canal 14 commande la couleur verte ; valeur reçue : $217 \Rightarrow 217/255 = 85$ % vert ; Le cahier des charges est respecté.

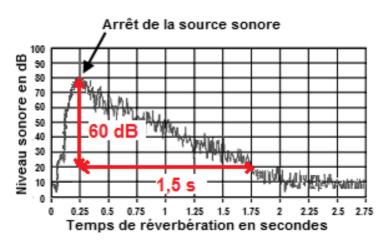
2.2 Étude de la sonorisation de la salle

Question 2.2.1 Nécessité de contrôler le temps de réverbération :

Si TR est trop faible, les parois, le sol et le plafond sont parfaitement absorbant. Il n'y a aucun phénomène de réverbération, le son émis par une personne est faible et sans relief, comme à l'extérieur.

Si TR est trop grand, les paroles sont difficilement compréhensibles (effet cathédrale).

En fonction de l'utilisation de la grande salle pour les différents spectacles, il est nécessaire d'adapter le temps de réverbération.


Question 2.2.2 Raison pour laquelle il est préférable d'utiliser une méthode active :

Solution moins onéreuse et plus rapide car il n'y a pas de modification matérielle de la salle (parois, abats-son,....).

Question 2.2.3

Voir DR2

Question 2.2.4 Mesure du temps de réverbération et type de spectacle : Sur le graphique ci-contre, la durée de TR est de 1,5 s. D'après le document DT7, cela correspond au réglage d'un TR pour un opéra.

2.3 Étude du proscénium modulable (monte orchestre)

Choix de la solution technologique « »Spiralift» »

Question 2.3.1 Atout du «Spiralift» par rapport aux contraintes architecturales :

Sur le DT9, nous constatons que l'emplacement dédié au mécanisme de levée du monte orchestre est très restreint en hauteur : 770 mm. La « hauteur compacte » du «Spiralift» (DT8) est donc tout à fait adaptée à cela.

Justification du nombre de «Spiralift» dans le mécanisme de levée

Question 2.3.2 Charge utile en statique due aux spectateurs et charge totale en statique :

 $P_{charge\ utile\ statique} = 90\ x\ 9.81\ x\ 104 = 91821,6\ N = 9182,16\ daN$; $P_{total\ statique} = P_{structure} + P_{charge\ utile\ statique} = 13350 + 9182,16 = 22532,16\ daN$;

Question 2.3.3 Nombre minimum de «Spiralift» nécessaire au mécanisme :

 $P_{total\ statique}$ / $P_{charge\ max\ «Spiralift»}$ = 22532,16 / 4450 = 5,06 «Spiralift» ; Il faut donc un minimum de 6 «Spiralift» pour le mécanisme de levée du monte orchestre.

<u>Vérification du temps de levée du monte orchestre entre les positions extrêmes :</u> niveau rangement et niveau scène

Question 2.3.4 Mouvement final décrit par la colonne :

La colonne constituée des 2 bandes se déplace en translation verticale.

Question 2.3.5 Nom et orientation de la liaison permettant la transformation du mouvement :

Liaison hélicoïdale suivant l'axe vertical.

Question 2.3.6 Distance séparant le niveau le plus bas du niveau le plus haut et temps nécessaire au déplacement :

La distance entre niveau bas et haut du monte orchestre est de 5950 mm ; Comme v = d/t alors t = d/v soit 5,950/0,05 = 119 s;

Le temps de levée étant de 1min et 59 secondes, il est bien inférieur aux 3 min maximum imposées dans le cahier des charges DT10.

Validation du choix des moteurs par rapport aux exigences du cahier des charges

Question 2.3.7

Voir DR3

Question 2.3.8 Puissance de levée en translation P_{Mont orche} du monte orchestre :

P=F x V avec F= masse structure x g + Charge max en mouvement sans public x g ; F = 13350 x 9,81+ 10000 x 9,81 = 229063,5 N ;

 $P_{Mont orche} = 229063,5 \times 0,05 = 11453,18 \text{ W}$

Question 2.3.9 Puissance $P_{2Motred}$ ramenée sur l'arbre de sortie des deux motoréducteurs et puissance P_{Motred} de chacun des motoréducteurs :

 $\eta_{\text{Chaine cinem}} = 0.7 \times 0.96 \times 0.98 = 0.66$;

 $P_{2Motred} = P_{Mont orche} / \eta_{Chaine cinem} = 11453,18 / 0,66 = 17353,3 W$;

 $P_{Motred} = P_{2Motred} / 2 = 17353,3 / 2 = 8676,65 W$;

Question 2.3.10 Vitesse de rotation N_{»Spiralift»}:

Pas «Spiralift» = 52.9 mm.tr^{-1} ; V = 0.05 m.s^{-1} = 50 mm.s^{-1} ;

 $N_{\text{NSpiralift}} = V / \text{pas} = 50 / 52,9 = 0,945 \text{ tr.s}^{-1}$

 $N_{\text{»Spiralift»}} = 0.945 \times 60 = 56.7 \text{ tr.min}^{-1};$

Question 2.3.11 Vitesse de rotation N_{Motred} de l'arbre en sortie du motoréducteur :

 $r = Z_{menante} / Z_{men\acute{e}} = 21 / 54 = 0.39$;

 $N_{\text{motred}} = N_{\text{Mont orche}} / r = 56.7 / 0.39 = 145.4 \text{ tr.min}^{-1}$;

Question 2.3.12 Conclusion sur le dimensionnement des motoréducteurs :

On constate que les motoréducteurs choisis correspondent bien aux données imposées par le cahier des charges car la puissance en sortie de réducteur est de 11 x 0,9 = 9,9 kW (rendement réducteur 0,9), elle est donc supérieure à celle nécessaire (8676,5 W).

La vitesse en sortie de réducteur est proche de la vitesse du motoréducteur (152 tr.min⁻¹ > 145,4 tr.min⁻¹).

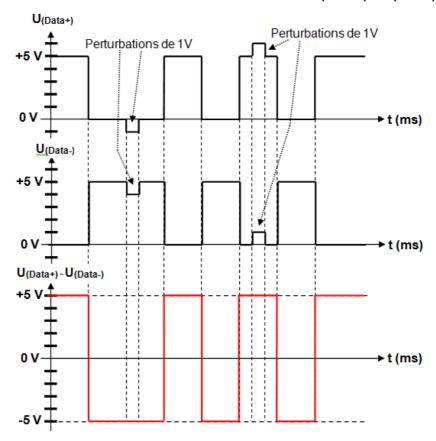
2.4 Synthèse partie 2

Question 2.4.1 Conclusion argumentée qui montre l'aspect innovant et durable des équipements mis en place dans cette grande salle du théâtre des Quinconces :

Aspect innovant des équipements de la grande salle du théâtre :

- Projecteur de lumière à LED durable de part la durée de vie des lampes et la faible consommation d'énergie;
- Contrôle à distance des effets lumineux des projecteurs par protocole DMX ;
- Correction acoustique CARMEN[®] innovant de part sa correction active du son. Ceci permet une correction instantanée de l'acoustique de la salle en fonction du type de spectacle ;
- Proscénium (monte orchestre) adaptable avec un système de levée «Spiralift» innovant et durable (entretien limité, encombrement restreint et peu bruyant);

DOCUMENT RÉPONSES DR1


Question 1.4 : différence d'émission de CO₂ avec les deux types de ciment

	Ciment CEM I Ciment standard	Ciment CEM II / B-L Ciment bas carbone	
Masse de ciment en tonne	300 x 15 000 = 4 500 000 kg = 4 500 tonnes		
Émission de CO ₂ en kg eq CO ₂ / tonne de ciment	866	648	
Émission de CO ₂ totale en kg eq CO ₂	866 x 4 500 = 3 897 000 kg eq CO ₂	648 x 4 500 = 2 916 000 kg eq CO ₂	
Différence d'émission de CO ₂ du CEM II par rapport au CEM I	3 897 000 - 2 916 000 = 981 000 kg eq CO ₂		

Question 2.1.1 : comparaison des efficacités énergétiques de deux projecteurs

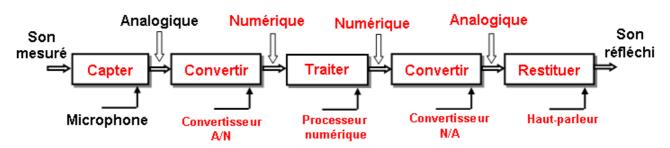
	Puissance consommée P (W)	Surface éclairée S (m²)	Éclairement E (Lux)	Flux lumineux (Lm) F = S x E	Efficacité lumineuse (Lm.W ⁻¹) Fe = F / P
LED PAR64	21	1,54	150	231	11
Halogène PAR64	500	3,66	947	3466	6,93

Question 2.1.3 : compléter le chronogramme du signal U_(Data+) - U_(Data-)

DOCUMENT RÉPONSES DR2

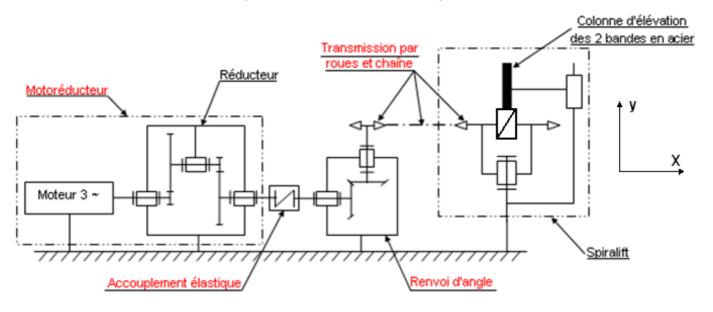
Question 2.1.5 : compléter les positions (ON ou OFF) des différents interrupteurs DIP

DIP	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
ON										
OFF										

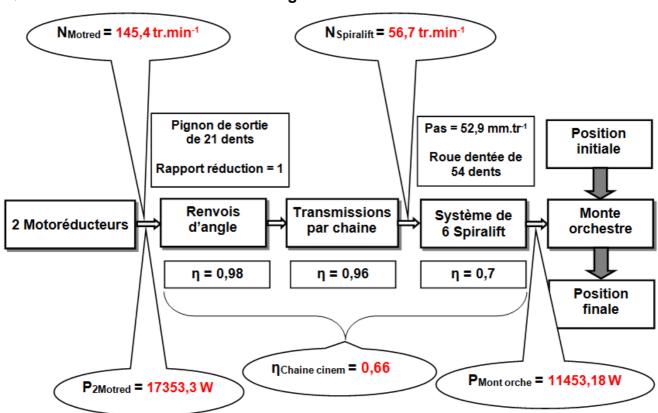

Question 2.1.6 : compléter les valeurs décimales de chaque canal du projecteur

Valeur du	Valeur du	Valeur du	Valeur du
1 ^{er} canal	2 ^{ième} canal	3 ^{ième} canal	4 ^{ième} canal
0	127	0	189

Question 2.1.8 : compléter les valeurs des canaux de la trame DMX


	Canal 13	Canal 14
Valeur binaire	00110011	11011001
Valeur décimale	51	217

Question 2.2.3 : chaîne d'information d'une cellule active



DOCUMENT RÉPONSES DR3

Questions 2.3.4, 2.3.5 et 2.3.7 : chaîne cinématique du monte orchestre limitée à la représentation d'un seul «Spiralift»

Question 2.3.7 à 2.3.11 : chaîne d'énergie du monte orchestre

