Sujet du bac S - SVT spécialité - Session 2018 Asie

1ère PARTIE : (8 points)

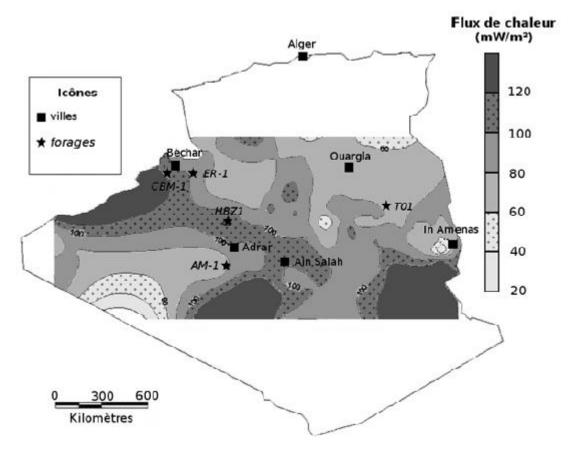
MAINTIEN DE L'INTÉGRITÉ DE L'ORGANISME

Après un échauffement insuffisant, un sportif se blesse au mollet alors qu'il court un 110m haies. Le médecin sportif présent sur place diagnostique un claquage musculaire. Cette blessure, correspondant à une lésion du tissu musculaire, déclenche une réaction inflammatoire aigüe. Cette réaction permet à l'organisme d'éliminer les débris cellulaires résultant de la lésion du tissu musculaire.

Présenter les symptômes associés à la réaction inflammatoire aigüe et préciser les mécanismes mis en jeu aboutissant à l'élimination des débris cellulaires.

Votre exposé comprendra une introduction, un développement structuré et une conclusion. Il sera accompagné d'un schéma illustrant l'enchainement des phénomènes lors de cette réaction inflammatoire aigüe.

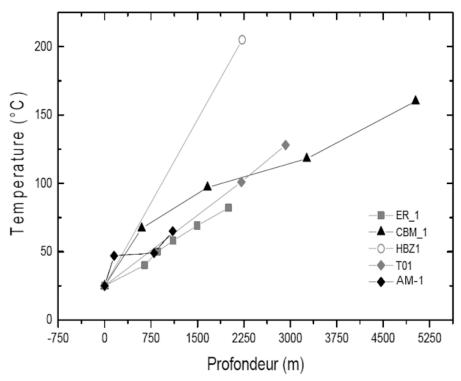
2ème PARTIE - Exercice 1 (3 points)


GÉOTHERMIE ET PROPRIÉTÉS THERMIQUES DE LA TERRE

Des études sont actuellement en cours pour déterminer le potentiel géothermique du sud de l'Algérie. On cherche à déterminer les zones les plus favorables à une exploitation géothermique.

À partir de l'étude des documents, répondre aux questions du QCM en écrivant, sur la copie, le numéro de la question et la lettre correspondant à l'unique bonne réponse.

Document 1 : Carte du flux de chaleur dans le Sahara algérien


Le flux de chaleur moyen observé en domaine continental est de l'ordre de 65 mW/m².

D'après D. Takherist (1986), et S. Ouali, A. Khellaf et K. Baddari (2006 et 2007)

Document 2 : Gradients géothermiques dans le Sahara algérien

Le gradient géothermique désigne la variation de la température en fonction de la profondeur. Dans son ensemble, le Sahara algérien présente un gradient géothermique moyen de l'ordre de 40°C/1000 m. Les variations exactes de la température en fonction de la profondeur ont été mesurées pour 5 forages situés sur le document 1 et sont présentées ci-dessous.

S. Ouali et A. Khellaf (2006)

QCM (Réponses à reporter sur la copie)

Question 1 – On s'intéresse au flux de chaleur présent dans différentes régions du Sahara algérien (document 1).

- a. Dans la région de Béchar, le flux de chaleur observé est supérieur au flux de chaleur moyen à la surface des continents.
- b. La région d'Ain Salah présente un flux de chaleur anormalement faible pour un continent.
- c. La région d'Ouargla présente un flux de chaleur supérieur à 120 mW/m².
- d. La région d'In Amenas est celle qui présente le flux de chaleur le plus important d'Algérie.

Question 2 - Les gradients géothermiques des différents forages montrent que (document 2) :

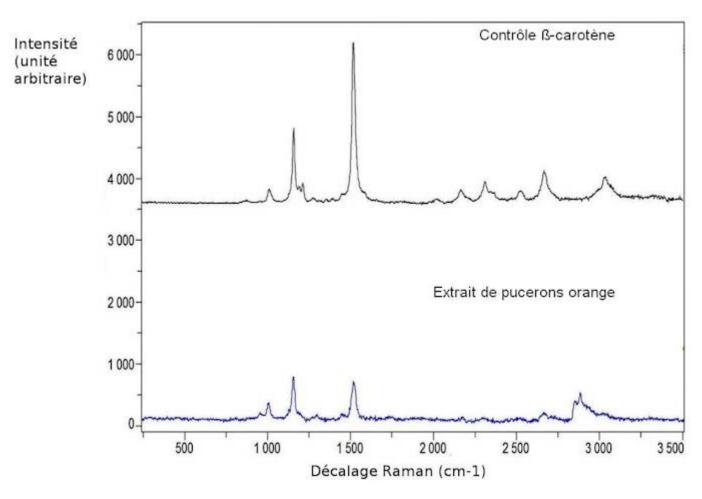
- a. La température diminue avec la profondeur et de façon identique quelle que soit la localisation.
- b. La température augmente avec la profondeur et de façon identique quelle que soit la localisation.
- c. La température diminue avec la profondeur mais de façon variable selon la localisation.
- d. La température augmente avec la profondeur mais de façon variable selon la localisation.

Question 3 - On s'intéresse à la zone du forage HBZ1 (documents 1 et 2).

- a. Cette zone présente un flux de chaleur et un gradient géothermique inférieurs à la moyenne donc elle ne peut pas être favorable à une exploitation géothermique.
- b. Cette zone présente un flux de chaleur et un gradient géothermique supérieurs à la moyenne donc elle ne peut pas être favorable à une exploitation géothermique.
- c. Cette zone présente un flux de chaleur et un gradient géothermique supérieurs à la moyenne donc elle peut être favorable à une exploitation géothermique.
- d. Cette zone présente un flux de chaleur inférieur à la moyenne ainsi qu'un gradient géothermique supérieur à la moyenne donc elle peut être favorable à une exploitation géothermique.

<u> 2ème PARTIE – Exercice 2 (Enseignement de spécialité). 5 points.</u>

ÉNERGIE ET CELLULE VIVANTE


Il existe différents phénotypes de pucerons, parmi lesquels on trouve les pucerons blancs et les pucerons orange.

À partir des documents et de connaissances, montrer que les pucerons orange réalisent une photosynthèse particulière à l'origine d'une production d'ATP dans les mitochondries.

Document 1 : Recherche de β-carotène chez les pucerons orange

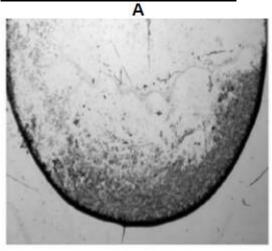
Des pucerons orange adultes sont broyés dans un tampon phosphate salin. On obtient alors une formation spontanée de cristaux orange, qu'on étudie par spectrométrie Raman. Cette technique permet d'identifier la nature de certaines liaisons entre les atomes.

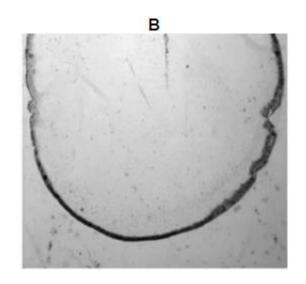
Un contrôle est également réalisé avec du β-carotène pur. Les pics obtenus à 1 550, 1 150 et 1 005 cm⁻¹ correspondent respectivement à la mise en évidence de liaisons de type C=C, CH-CH et CH-CH3 de ce pigment.

D'après A. Robichon et al. (2012)

Document 2 : Évaluation du pouvoir réducteur du β-carotène des pucerons orange

Le β -carotène est un pigment également fabriqué par les plantes. On le trouve dans les chloroplastes où il intervient dans la captation d'énergie lumineuse durant la photosynthèse. Lorsqu'il est réduit, le sel de tétrazolium MTT donne un précipité bleu, le formazan. On utilise ce sel pour vérifier le pouvoir réducteur du β -carotène des pucerons orange.

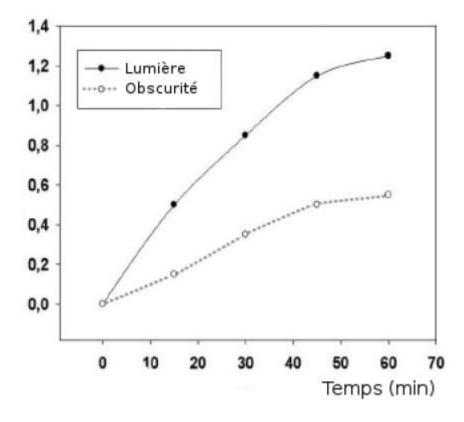

Document 2a : Mise en contact du tétrazolium (MTT) avec un extrait de pucerons orange

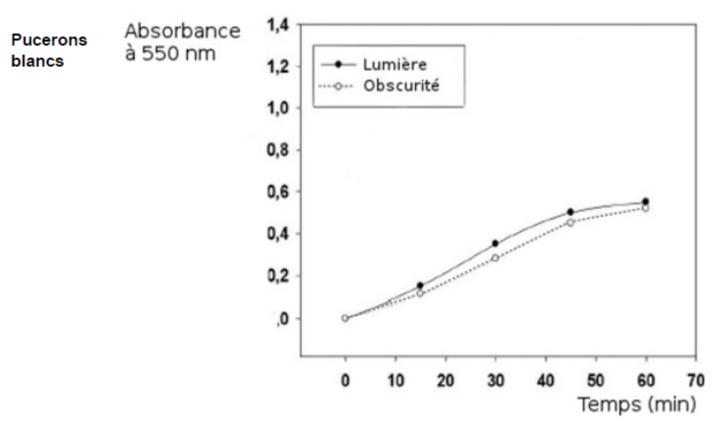

On place une solution de MTT sur une lame, à laquelle on ajoute un extrait de pucerons orange (contenant du β-carotène). L'ensemble a été exposé à de la lumière visible durant 30 minutes (A) ou placé à l'obscurité (B), puis le tout a été délicatement rincé. Lorsque le MTT est réduit, il précipite et forme du formazan qui reste sur la lame.

Résultats obtenus dans différentes conditions expérimentales (+ : élément présent)

Expérience	MTT	Extrait de puceron orange	Conditions	Photo présentant le résultat obtenu
1	+	+	Lumière	А
2	+	+	Obscurité	В
3	_	+	Lumière	В
4	_	+	Obscurité	В
5	+	_	Lumière	В

Photos présentant le résultat obtenu

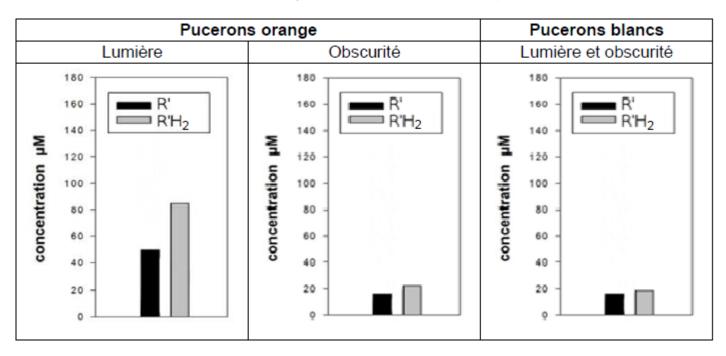

D'après A. Robichon et al. (2012)


Sur les photos A et B, les tâches grises correspondent aux dépôts de formazan. Remarque : on ne tiendra pas compte de la coloration noire correspondant à la ligne de contour.

Document 2b: Dosage du formazan

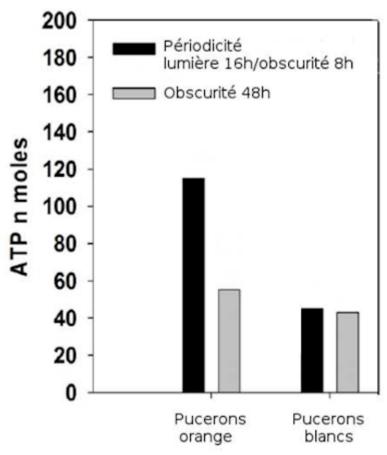
Avec un protocole similaire à celui du document 2a, on dose la quantité de formazan produite dans différentes conditions. Pour cela on mesure l'absorbance à 550nm : celle-ci est directement proportionnelle à la quantité de formazan produite.

Pucerons Absorbance orange à 550 nm



D'après A. Robichon et al. (2012)

<u>Document 3</u>: Taux de R'/R'H2 dans le cytosol et dans les mitochondries de pucerons placés dans différentes conditions


Dans le couple rédox, R' est le composé oxydé tandis que R'H2 est le composé réduit.

D'après A. Robichon et al. (2012)

NB: Les résultats obtenus ont été considérés comme statistiquement significatifs

<u>Document 4</u> : Dosage d'ATP dans des pucerons, pour différentes conditions expérimentales

D'après A. Robichon et al. (2012)